Haddeleme ile Birleştirilen AISI 430/Al 1050 /AISI 304 Tabakalı Kompozitlerde Isıl işlemin Ara Yüzey ve Mekanik Özelliklere Etkisi

Bu çalışmada, haddeleme işlemi ile AISI 304 östenitik paslanmaz çelik ve AISI 430 ferritik paslanmaz çelik sacları araya ticari saflıkta 1050 alüminyum levha konularak lamine kompozit üretilmiştir. Üretim sonrası farklı sıcaklık ve sürede ısıl işlem uygulanmış kompozit plakaların ara yüzey bağ mukavemeti, mikroyapısı ve mekanik özellikleri incelenmiştir. Kompozitlerin mekanik özellikleri çekme testi, mikro sertlik ölçümü, sıyırma testi ile belirlenmiş, taramalı elektron mikroskobu (SEM) ve enerji dağılımı spektroskopisi (EDS) ile karakterize edilmiştir. Uygulanan ısıl işlem parametreleri arasında yüksek mekanik özellik (434,95MPa) ve süneklik (%27,16) sağlaması yönünden ve işlem kolaylığı bakımından 450˚C-12 h uygun görülmüştür. 550˚C’de 12 h yapılan ısıl işlem sonrasında ise katmanlar arasındaki bağ kuvvetinin sıfıra yakın bir değere düştüğü belirlenmiştir.

Effect of Heat Treatment on Interface and Mechanical Properties of AISI 430/Al 1050/AISI 304 Layered Composites Joined by Rolling

In this study, a laminated composite was produced by placing a commercial grade 1050 aluminium sheet between AISI 304 austenitic stainless steel and AISI 430 ferritic stainless-steel sheets by rolling process. The interfacial bond strength, microstructure, and mechanical properties of the composite plates were investigated, which were heat-treated at different temperatures and times after production. The mechanical properties of the composites were determined by tensile test, microhardness measurement, peel test, and characterized by scanning electron microscopy (SEM) and energy distribution spectroscopy (EDS). Among the applied heat treatment parameters, 450˚C-12 h was found suitable for high mechanical properties (435.95 MPa), ductility (27.16%), and ease of processing. After the heat treatment at 550˚C for 12 h, it was determined that the bond strength between the layers decreased to a value close to zero.

___

  • [1] A. Dudek, B. Lisiecka, and R. Ulewicz, “The effect of alloying method on the structure and properties of sintered stainless steel,” Archives of Metallurgy and Materials, vol. 62, pp. 281–287, 2017.
  • [2] F. Presuel-Moreno, J. R. Scully, and S. R. Sharp, “Literature review of commercially available alloys that have potential as low-cost corrosion resistant concrete reinforcement,” Corrosion 2009, 2009.
  • [3] Z. Li et al., “Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment,” Materials Science and Engineering: A, vol. 787, p. 139513, 2020.
  • [4] G. Casalino, A. Angelastro, P. Perulli, C. Casavola, and V. Moramarco, “Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld,” Journal of Manufacturing Processes, vol. 35, pp. 216–225, 2018.
  • [5] M. H. Bina, M. Jamali, M. Shamanian, and H. Sabet, “Investigation on the resistance spot-welded austenitic/ferritic stainless steel,” The International Journal of Advanced Manufacturing Technology, vol. 75, no. 9–12, pp. 1371–1379, 2014.
  • [6] A. K. Lakshminarayanan, K. Shanmugam, and V. Balasubramanian, “Effect of welding processes on tensile and impact properties, hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal,” Journal of iron and steel research, International, vol. 16, no. 5, pp. 66–72, 2009.
  • [7] J. R. Berretta, W. de Rossi, M. D. M. das Neves, I. A. de Almeida, and N. D. V. Junior, “Pulsed Nd: YAG laser welding of AISI 304 to AISI 420 stainless steels,” Optics and Lasers in Engineering, vol. 45, no. 9, pp. 960–966, 2007.
  • [8] G. Sharma et al., “Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review,” Journal of King Saud University-Science, vol. 31, no. 2, pp. 257–269, 2019.
  • [9] Z. Li et al., “Hot deformation behaviour and interfacial characteristics of bimetal composite at elevated temperatures,” Intermetallics, vol. 125, p. 106893, 2020.
  • [10] V. Jindal, V. C. Srivastava, A. Das, and R. N. Ghosh, “Reactive diffusion in the roll bonded ironaluminum system,” Materials letters, vol. 60, no. 13–14, pp. 1758–1761, 2006.
  • [11] D. Naoi and M. Kajihara, “Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures,” Materials Science and Engineering: A, vol. 459, no. 1–2, pp. 375–382, 2007.
  • [12] D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, and W. H. Hunt, “Mechanical behaviour of laminated metal composites,” International Materials Reviews, vol. 41, no. 5, pp. 169–197, 1996.
  • [13] M. L. S. Jekla, O. NA, K. Materialih, I. Z. VRO, and I. M. Valjanjem, “Mechanical Properties of Laminated Steel-Based Composite Materials Fabricated by Hot Rolling,” Materiali in tehnologije, vol. 51, no. 4, pp. 557–561, 2017.
  • [14] V. I. Mali et al., “Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding,” The International Journal of Advanced Manufacturing Technology, vol. 93, no. 9, pp. 4285–4294, 2017.
  • [15] K. Liu, Y. Li, C. Xia, and J. Wang, “Microstructural evolution and properties of TLP diffusion bonding super-Ni/NiCr laminated composite to Ti-6Al-4V alloy with Cu interlayer,” Materials & Design, vol. 135, pp. 184–196, 2017.
  • [16] X. Gao, D. Wei, and Z. Jiang, “Analysis of temperature field in liquid-solid bimetal casting of laminated metal composite,” Advanced Science Letters, vol. 15, no. 1, pp. 48–52, 2012.
  • [17] A. Farid and S. Guo, “On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites,” Acta Materialia, vol. 55, no. 4, pp. 1467–1477, 2007.
  • [18] C. M. Cepeda-Jiménez, P. Hidalgo, M. Pozuelo, O. A. Ruano, and F. Carreño, “Influence of constituent materials on the impact toughness and fracture mechanisms of hot-roll-bonded aluminum multilayer laminates,” Metallurgical and Materials Transactions A, vol. 41, no. 1, p. 61, 2010.
  • [19] Q. Huang, X. Yang, L. Ma, C. Zhou, G. Liu, and H. Li, “Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling,” Journal of Iron and Steel Research International, vol. 21, no. 10, pp. 931–937, 2014.
  • [20] J. Yuan, Y. Pang, and T. Li, “Multilayer clad plate of stainless steel/aluminum/aluminum alloy,” Journal of Wuhan University of Technology-Mater Sci Ed, vol. 26, no. 1, pp. 111–113, 2011.
  • [21] K. S. Lee, D. H. Yoon, S. E. Lee, and Y. S. Lee, “The effect of thermomechanical treatment on the interface microstructure and local mechanical properties of roll bonded pure Ti/439 stainless steel multilayered materials,” Procedia Engineering, vol. 10, pp. 3459–3464, 2011.
  • [22] H. Danesh Manesh and A. Karimi Taheri, “Study of mechanisms of cold roll welding of aluminium alloy to steel strip,” Materials science and technology, vol. 20, no. 8, pp. 1064–1068, 2004.
  • [23] T. Tabata, S. Masaki, and K. Azekura, “Bond criterion in cold pressure welding of aluminium,” Materials Science and Technology, vol. 5, no. 4, pp. 377–381, 1989.
  • [24] J. An, Y. Lu, D. W. Xu, Y. B. Liu, D. R. Sun, and B. Yang, “Hot-roll bonding of Al-Pb bearing alloy strips and hot dip aluminized steel sheets,” Journal of materials engineering and performance, vol. 10, no. 2, pp. 131–135, 2001.
  • [25] R. Cao, Y. Ding, Y. Yan, X. Zhang, and J. Chen, “Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding,” Composite Interfaces, 2019.
  • [26] B. X. Liu et al., “Deformation behavior and strengthening mechanisms of multilayer SUS304/Cr17 steels with laminate/network interface,” Metallurgical and Materials Transactions A, vol. 51, no. 7, pp. 3658– 3673, 2020.
  • [27] M. Talebian and M. Alizadeh, “Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics,” Materials Science and Engineering: A, vol. 590, pp. 186–193, 2014.
  • [28] A. Mendes, I. Timokhina, A. Molotnikov, P. D. Hodgson, and R. Lapovok, “Role of shear in interface formation of aluminium-steel multilayered composite sheets,” Materials Science and Engineering: A, vol. 705, pp. 142–152, 2017.
  • [29] H. Takuda, H. Fujimoto, and N. Hatta, “Formabilities of steel/aluminium alloy laminated composite sheets,” Journal of materials science, vol. 33, no. 1, pp. 91–97, 1998.
  • [30] F. Yoshida, R. Hino, and T. Okada, “Stretch bending and the subsequent straightening of sheet metal laminates,” in Advances in Engineering Plasticity and its Applications, Elsevier, 1993, pp. 1097–1104.
  • [31] F. X. Yin, L. Li, Y. Tanaka, S. Kishimoto, and K. Nagai, “Hot rolling bonded multilayered composite steels and varied tensile deformation behaviour,” Materials Science and Technology, vol. 28, no. 7, pp. 783–787, 2012.
  • [32] M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo, and L. Wagner, “Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties,” Materials Science and Engineering: A, vol. 565, pp. 351–358, 2013.
  • [33] S. Nambu, M. Michiuchi, J. Inoue, and T. Koseki, “Effect of interfacial bonding strength on tensile ductility of multilayered steel composites,” Composites Science and Technology, vol. 69, no. 11–12, pp. 1936–1941, 2009.
  • [34] K. Bouche, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminium,” Materials Science and Engineering: A, vol. 249, no. 1–2, pp. 167–175, 1998.
  • [35] V. I. Dybkov, “Interaction of 18Cr-10Ni stainless steel with liquid aluminium,” Journal of Materials Science, vol. 25, no. 8, pp. 3615–3633, 1990.
  • [36] K. Barmak and V. I. Dybkov, “Interaction of iron-chromium alloys containing 10 and 25 mass% chromium with liquid aluminium Part I Dissolution kinetics,” Journal of materials science, vol. 38, no. 15, pp. 3249–3255, 2003.
  • [37] S. Kobayashi and T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment,” Materials science and engineering: A, vol. 338, no. 1–2, pp. 44–53, 2002.