Pr1.4-xLaxSr1.6Mn2O7 (x:0; 0.4; 0.7; 1.0) Çift Peroskit Manganit Bileşiklerin Yapısal ve Elektriksel Özelliklerinin İncelenmesi

Bu çalışmada sol-jel yöntemi kullanılarak hazırlanan ve 1000 oC’de hava ortamında 24 saat sinterlenen Pr1.4-xLaxSr1.6Mn2O7 (x:0; 0.4; 0.7; 1.0) bileşiklerinin yapısal, morfolojik ve elektriksel özellikleri incelenmiştir. X-ışınları kırınım desenleri (XRD) analizleri sonucunda, bileşiklerin farklı oranlarda I4/mmm uzay grubuna sahip (tetragonal) çift peroskit ve R3 ̅c uzay gurubuna sahip (trigonal) tek peroskit bileşiklerinden meydana geldiğini ortaya koymuştur. Tüm bileşikler içerisinde baskın olan peroskit fazın, tek peroskit faz olduğu ve artan La katkılamasına bağlı olarak bu fazın ağırlık yüzdesinin arttığı yapılan XRD arıtımları sonucunda bulunmuştur. Bileşiklerin atomik kuvvet mikroskobu (AFM) ve enerji dağılımlı x-ışını spektroskopi (EDS) ataçmanına sahip taramalı elektron mikroskobu (SEM) analizlerinden, La iyonlarının Pr iyonları ile yer değiştirmesine bağlı olarak, yüzeydeki tanelerin büyüdüğü ve boşlukların azaldığı bulunmuştur. EDS analizleri sonucunda hedeflenen bileşiklerin stokiyometrilerine uygun bir şekilde başarılı olarak üretildiklerini ortaya koymuştur. Sıcaklığa bağlı olarak değişen elektriksel direnç ölçümlerinden (R-T), yarıiletken davranış gösteren ve La iyonu içermeyen Pr1.4Sr1.6Mn2O7 bileşiğinin direnç davranışının La iyonlarının yapıya girmesi ile değiştiği ve en çok La içeren bileşiğin yaklaşık 165,4 K’de metal-yalıtkan (TIM) faz geçişi gösterdiği bulunmuştur.
Anahtar Kelimeler:

Sol-Jel, XRD, AFM, Metal-yalıtkan

___

  • [1] Hudgins A. C., Pavlovic Jr. A.S. 1965. Magnetocaloric Effect in Dysprosium. J. Appl. Phys, 36: 3628-3630.
  • [2] Brown G. V. 1976. Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys., 47: 3673-3680.
  • [3] Hashimoto T., Numasawa T., Shino M., Okada T. 1981. Magnetic Refrigeration in the Temperature Range from 10 K to Room Temperature: The Ferromagnetic Refrigerants. Cryogenics, 21: 647-653.
  • [4] Pecharsky V.K., Gschneidner. K.A. Jr. 1997. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett., 78: 4494-4497.
  • [5] Pecharsky V.K., Gschneidner K.A. Jr. 1997. Phase Relationships and Crystallography in the Pseudobinary System Gd5Si4-Gd5Ge4. J.Alloys and Compounds, 260: 98-106.
  • [6] Gschneidner K.A. Jr., and Pecharsky V.K. 2000. Magnetocaloric Materials. Annual Review of Materials Science, 30: 387-429.
  • [7] N.T. Hien and Thuy N.P. 2002. Preparation and Magnetocaloric Effect of La1-xAgxMnO3 (x= 0.10-0.30) Perovskite Compounds. Physica B, 319: 168-173.
  • [8] Morelli D.T., Mance A.M., Mantese J.V., Micheli A.L. 1996. Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79: 373-375
  • [9] Guo Z. B., Du Y. W., Zhu J. S., Huang H., Ding W. P., and Feng D.1997. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides Phys. Rev. Lett., 78: 1142-1145.
  • [10] Ayas A. O., Akyol M., Ekicibil A. 2016. Structural and magnetic Properties with Large Reversible Magnetocaloric Effect in in (La1-xPrx)(0.85)Ag0.15MnO3 (0.0 < x < 0.5) Compounds. Philosophical Magazine, 96 (10): 922-937.
  • [11] Taşarkuyu E., Irmak A.E., Coşkun A., Aktürk S. 2014. Structural, magnetic and transport properties of La0. 70Sr0. 21K0. 09MnO3. Journal of Alloys and Compounds, 588: 422–427.
  • [12] Das S., and Dey T. K. 2006. Magnetocaloric Effect in Potassium Doped Lanthanum Manganite Perovskites Prepared by a Pyrophoric Method. J. Phys.: Condens. Matter, 18: 7629-7641.
  • [13] Gaur A., and Varma G. D., 2006. Sintering Temperature Effect on Electrical Transport and Magnetoresistance of Nanophasic La0.7Sr0.3MnO3. J. Phys.: Condens. Matter, 18: 8837-8846.
  • [14] Dhiman I., Das A., Nigam A.K., Kremer R.K. 2013. Effect of B-Site Doping in (La0. 3Pr0. 7) 0.65 Ca0. 35Mn1− xBxO3 (B= Fe, Cr, Ru and Al) Manganites. Journal of Magnetism and Magnetic Materials, 334: 21-30.
  • [15] Maignan A., Damay F., Barnabé A., Martin C., Hervieu M., and B. Raveau. 1998. The effect of Mn-site doping on the magnetotransport properties of CMR manganites. Philosophical Transactions of the Royal Society A, 356 (1742): 1635-1659.
  • [16] Coşkun A., Taşarkuyu E., Irmak A. E., Acet M., Samancıoğlu Y., and Aktürk S. 2015. Magnetic Properties of La0.65Ca0.30Pb0.05Mn0.9B0.1O3 (B= Co, Ni, Cu and Zn). Journal of Alloys and Compounds, 622: 796-804.
  • [17] Mishra A., Bhattacharjee S. 2017. Effect of A- or B-site Doping of Perovskite Calcium Manganite on Structure, Resistivity, and Thermoelectric Properties. Journal of the American ceramic society, 100 (10): 4945-4953.
  • [18] Ghozza M. H., Yahia I. S., and El-Dek S. I. 2020. Role of B-site cation on the structure, magnetic and dielectric properties of nanosized La0.7Sr0.3Fe1−xMxO3 (M = Mn; Co and x = 0, 0.5) perovskites. Mater. Res. Express, 7: 056104-056128.
  • [19] Dudric R., Goga F., Neumann M., Mican S., and Tetean R. 2012. Magnetic properties and magnetocaloric effect in La 1.4− xCe xCa1.6Mn2O7 perovskites synthesized by sol–gel method, Journal of materials science, 47: 3125-3130
  • [20] Yu G., Xu B., Xiong J., Liu X., Liu L., Yuan S. 2011. Effect of Cr doping in the bilayer manganite La1.4Sr1.6Mn2O7. Journal of Magnetism and Magnetic Materials, 323 (15): 1925-1928
  • [21] Louca D., Kwei G. H., and Mitchell J. F. 1998. Local Lattice Effects in the Layered Manganite La1.4Sr1.6Mn2O7. Phys. Rev. Lett., 80: 3811-3814