Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması

Bu çalışmada, farklı atomlar-arası potansiyeller ve klasik moleküler dinamik (MD) benzetimleri kullanılarak, yüzey merkezli kübik (fcc) yapıya sahip platin (Pt) elementinin taban durumdan başlayıp erime noktasının hemen üzerindeki bir sıcaklık aralığındaki fiziksel özellikleri ve atomik yapısının devinimi detaylı bir şekilde incelenmiştir. Artan sıcaklığa bağlı olarak katı sistemin yapısal gelişimini analiz etmek ve erime noktasını belirlemek için çiftler dağılım fonksiyonu (PDF), enerji-sıcaklık (E-T), örgü parametresi-sıcaklık (a-T), doğrusal termal genleşme katsayı-sıcaklık (CLTE-T) eğrileri ve çift analiz yöntemi gibi analiz yöntemleri kullanıldı. Tüm potansiyeller için MD benzetiminin sonuçlarının analizinden elde edilen veriler daha önce rapor edilen deneysel veya teorik verilerle karşılaştırılmış ve tartışılmıştır. Farklı atomlar-arası potansiyellerle elde edilen sonuçlar çoğunlukla birbirleri ile tutarlı olmasına rağmen, farklılık gösterdikleri noktalar da bulunmaktadır. Özellikle, sistemin erime noktasının belirlenmesi konusunda, her bir potansiyelin farklı erime sıcaklıkları ürettiği gözlenmiştir. Tüm potansiyel enerji fonksiyonlarında ortak olarak, artan sıcaklıkla birlikte fcc yapıyı temsil eden 1421 bağlı çiftlerinin sayısı azalmış ve bu çiftlerin büyük bir bölümünün özellikle kusurlu icosahedra (deficos) ve kusurlu fcc yapıyı temsil eden 1541 ve 1431 bağlı çiftlerine dönüştüğü görülmüştür. Pt elementi için burada ele alınan potansiyellerin bazıları düşük bazıları ise yüksek sıcaklık aralığındaki fiziksel özellikleri açıklamada başarılı olurken, Sheng ve arkadaşları tarafından öne sürülen gömülü atom metot potansiyeli (EAM1) ve sıkı-bağlı (TB) potansiyelinin saf Pt elementinin geniş sıcaklık ölçeğinde ele alınan tüm özelliklerini açıklamada diğerlerine göre daha başarılı olduğu görülmüştür.

___

  • 1. Sheng H. W., Luo W. K., Alamgir F. M., Bai J. M., Ma E. 2006. Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439 (7075): 419–425.
  • 2. Zhou X. W., Johnson R. A., Wadley H. N. G. 2004. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69 (14): 144113.
  • 3. Celik F. A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions, Physics Letters A, 378 (30–31): 2151–2156.
  • 4. Domekeli U., Sengul S., Celtek M., Canan C. 2018. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations, Philosophical Magazine, 98 (5): 371-387.
  • 5. Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy,Vacuum, 136: 20–27.
  • 6. Zhang Y., Mattern N., Eckert J. 2011. Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: Molecular dynamics simulations, Journal of Applied Physics, 110 (9): 093506.
  • 7. Sengul S., Celtek M. 2018. Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium, BEU Journal of Science, 7 (1): 144–158.
  • 8. Johnson M. L., Blodgett M. E. E., Lokshin K. A. A., Mauro N. A. A., Neuefeind J., Pueblo C., Kelton K. F. F. 2016. Measurements of structural and chemical order in Zr80Pt20 and Zr77Rh23 liquids, Physical Review B, 93: 054203.
  • 9. Oluwajobi A., Chen X. 2011. The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining, International Journal of Automation and Computing, 8 (3): 326–332.
  • 10. Allen M. P., Tildesley D. J. 1991. Computer simulation of liquids. Oxford,: Clarendon Press, NY, USA.
  • 11. Frenkel D., Smit B. 2002. Understanding molecular simulation: from algorithms to applications (Academic P.). San Diego, second edition.
  • 12. Brenner D. W. 2005. The Art and Science of an Analytic Potential,In Computer Simulation of Materials at Atomic Level. Weinheim, FRG: Wiley-VCH Verlag GmbH Co. KGaA, (pp. 23–40).
  • 13. Jones J. E., Ingham A. E. 1925. On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy, Proc. R. Soc. London Ser. A, 107: 363.
  • 14. Morse P. M. 1929. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels, Physical Review, 34 (1): 57–64.
  • 15. Daw M. S., Baskes M. I. 1984. Embedded atom method: derivation and application to impurities,surfaces and other defects in metal, Phsical Review B, 29 (12), 6443–6453.
  • 16. Daw M. S., Baskes M. I. 1983. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Physical Review Letters, 50 (17): 1285–1288.
  • 17. Finnis M. W., Sinclair J. E. 1984. A simple empirical N -body potential for transition metals, Philosophical Magazine A, 50 (1): 45–55.
  • 18. Sutton A. P., Chen J. 1990. Long-range Finnis–Sinclair potentials,Philosophical Magazine Letters, 61 (3): 139–146.
  • 19. Rafii-Tabar H., Sutton A. P. 1991. Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys, Philosophical Magazine Letters, 63 (4): 217–224.
  • 20. Jacobsen K. W., Norskov J. K., Puska M. J. 1987. Interatomic interactions in the effective-medium theory, Physical Review B, 35 (14): 7423–7442.
  • 21. Cleri F., Rosato V. 1993. Tight-binding potentials for transition metals and alloys, Physical Review B, 48 (1): 22–33.
  • 22. Rosato V., Guillope M., Legrand, B. 1989. Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philosophical Magazine A, 59 (2): 321–336.
  • 23. Sheng H. W., Kramer M. J., Cadien A., Fujita T., Chen M. W. 2011. Highly optimized embedded-atom-method potentials for fourteen FCC metals, Physical Review B - Condensed Matter and Materials Physics, 83 (13): 1–20.
  • 24. Erkoç Ş. 1997. Empirical many-body potential energy functions used in computer simulations of condensed matter properties, Physics Reports, 278 (2): 79–105.
  • 25. Dömekeli Ü. 2011. Nanomateryallerin erime sürecindeki fiziksel özelliklerinin moleküler dinamik simülasyonu ile incelenmesi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, 243s, Edirne.
  • 26. Celtek M., Sengul S. , Effects of the cooling rate on the atomic structure and the glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations, Turkish Journal of Physics, (Baskıda).
  • 27. Cagin T., Qi Y., Li H., Kimura Y., Ikeda H., Johnson W. L., Goddard W. A. 1999. The Quantum Sutton-Chen Many-Body Potential for Properties of fcc Metals, MRS Symp. Ser., 554: 43.
  • 28. Qi Y., Cagin T., Kimura Y., Goddard III W. A. 1991. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Phys. Rev. B, 59 (5): 3527–3533.
  • 29. Kazanc S. 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science, 38 (2): 405–409.
  • 30. Kart H. H., Tomak M., Uludoğan M., Çağın, T. 2005. Thermodynamical and mechanical properties of Pd–Ag alloys, Computational Materials Science, 32 (1): 107–117.
  • 31. Celik F. A. 2013. Cooling rate dependence of the icosahedral order of amorphous CuNi alloy: A molecular dynamics simulation, Vacuum, 97: 30–35.
  • 32. Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, European Physical Journal B, 89 (3): 65.
  • 33. Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50-xAlx bulk metallic glasses investigated by molecular dynamics simulations, Intermetallics, 84: 62–73.
  • 34. Celtek M. 2011. Çok bileşenli Cu ve Zr bazlı bulk metalik camsı alaşımlarının fiziksel özelliklerinin MD simülasyon metodu ile incelenmesi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, 229s, Edirne.
  • 35. Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations, Philosophical Magazine, 98 (9): 783-802.
  • 36. Kittel C. 1986. Introduction to Solid State Physics, New York: John Wiley Sons Inc, USA.
  • 37. Smith W., Forester T. R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, 14 (3): 136–141.
  • 38. Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, 81 (1): 511–519.
  • 39. Arblaster J. W. 1997. Crystallographic Properties of Platinum, Platinum Metals Rev., 41 (1): 12–21.
  • 40. Kirby R. K. 1991. Platinum-A Thermal Expansion Reference Material, International Journal of Thermophysics, 12 (4): 679–685.
  • 41. Cohen E. R., Cohen R. E., Lide D., Trigg G. 2003. Physicist’s Desk Reference, Springer.
  • 42. Waseda Y. 1981. The Structure of Non-Crystalline Materials-Liquids and Amorphous Solids, New York: London: McGraw-Hill, USA.
  • 43. Honeycutt J. D., Andersen H. C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters, Journal of Physical Chemistry, 91 (24): 4950–4963.
  • 44. Li G. X., Liang Y. F., Zhu Z. G., Liu C. S. 2003. Microstructural analysis of the radial distribution function for liquid and amorphous Al, Journal of Physics: Condensed Matter, 15 (14): 2259–2267.
  • 45. Çelik F. A., Kazanç S. 2010. CuNi Alaşımının Amorf Fazdan Kristal Faza Dönüşüm Sürecinde Mikro-Topak Özelliklerinin Moleküler Dinamik Yöntem ile İncelenmesi, Fırat Üniv. Fen Bilimleri Dergisi, 22 (2): 79–84.
  • 46. Çelik, F. A. 2010. Geçiş Metali Alaşımlarında Amorf Yapıdan Kristal Yapıya Dönüşümün Moleküler Dinamik Yöntemi ile İncelenmesi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, 177s, Elazığ.
  • 47. Chen H.-L., Su C.-H., Ju S.-P., Liu S.-H., Chen H.-T. 2015. Local structural evolution of Fe 54 C 18 Cr 16 Mo 12 bulk metallic glass during tensile deformation and a temperature elevation process: a molecular dynamics study, RSC Advances, 5 (126): 103925–103935.