Mikro Kirletici Naproksenin Atık Sulardan Spirulina platensis ile Modifiye Edilmiş Kitosan-Polivinilalkol Biyokompozitleri ile Adsorpsiyonu

Endüstriyel atık suların içerdiği mikro ve makro kirlilikler önemli bir çevresel kirletici kaynak olarak karşımızaçıkmaktadır. Bu nedenle, sunulan çalışmada, anti-enflamatuvar ilaç etken maddesi olan naproksenin, Spirulinaplatensis (SP) ile modifiye edilmiş kitosan/polivinil alkol (KTS-PVA) biyokompoziti kullanarak atık sulardanadsorpsiyon yöntemiyle giderilmesi incelenmiştir. Farklı oranlarda SP içeren KTS-PVA-SP biyokompozitmalzemelerin sentezlenmesi için gluteraldehit çapraz bağlayıcı olarak kullanılmış, KTS-PVA-SP biyokompozitleri,içersindeki SP oranı %1-3 (ağırlık/ağırlık) oranlarda hazırlanmış ve tüm biyokompozitlerin karakterizasyonu TGA,SEM, optik mikroskop ve BET analizleri ile yapılmıştır. Adsorpsiyon ile atık sulardan naproksenin giderimine aitçeşitli izoterm modelleri uygulanmış ve sonuçlar değerlendirilmiştir.

Micro Pollutant Naproxen Adsorption from Waste Water using Modified Chitosan-Poly (vinyl alcohol) with Spirulina platensis

The micro and macro pollutant content of industrial waste waters is an important source of environmental pollution. In the presenting study, the feasibility of using modified chitosan/poly(vinyl alcohol) (KTS-PVA) with Spirulina platensis (SP) as an adsorbent for adsorption of anti-inflammatory drug naproxen from waste water was investigated. KTS-PVA-SP biocomposites were synthesized using gluteraldehyde as a crosslinker, the biocomposites were reacted with different ratios of SP at 1-3% (w/w) in KTS-PVA-SP and the biocomposites were characterized by TGA, SEM, optical microscobe and BET analysis. Adsorption isotherms were applied onto naproxen treatment from waste water and the results were discussed.

___

  • [1] Yuana H., Zhanga J., Lua, Z., Mina H., Wuc C. 2009. Studies on Biosorption Equilibrium And Kinetics of Cd2+ by Streptomyces Sp. K33 and HL-12. Journal of Hazardous Materials, 164: 423- 431.
  • [2] Onyancha D., Ward Mavura W., Ngila J.C., Ongoma P., Chacha J. 2008. Studies of Chromium Removal from Tannery Wastewaters By Algaebiosorbents, Spirogyra Condensata and Rhizoclonium Hieroglyphicum. Journal of Hazardous Materials, 158: 605-614.
  • [3] Erdogan Y.A. 2005. Atık Sulardan Çeşitli Adsorpbanlarla Arsenik Giderimi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 136s, İstanbul.
  • [4] Othmer K. 2008. Seperation Technology. John Wiley & Sons Inc, 2nd Ed, Vol.1, USA.
  • [5] Özçimen D. 2007. Çeşitli Bitkisel Atıkların Karbonizasyon Yoluyla Değerlendirilmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 223s, İstanbul.
  • [6] Kumar M., Kulshreshtha J., Singh G.P. 2011. Growth and Biopigment Accumulation of Cyanobacterium Spirulina Platensis at Different Light Intensities and Temperature. Brazilian Journal of Microbiology, 42 (3): 1128-1135.
  • [7] Madkour F.F., Kamil A.E.W., Nasr H.S. 2012. Production and Nutritive Value of Spirulina Platensis in Reduced Cost Media. The Egyptian Journal of Aquatic Research, 38 (1): 51-57.
  • [8] Bilgin Simsek E., Saloglu D., Ozcan N., Novak I., Berek D. 2017. Carbon Fiber Embedded Chitosan/PVA Composites for Decontamination of Endocrine Disruptor Bisphenol-A from Water. Journal of the Taiwan Institute of Chemical Engineers, 70: 291-30.
  • [9] Saloglu D., Ozcan N. 2018. Activated Carbon Embedded Chitosan/Polyvinyl alcohol Biocomposites for Adsorption of Nonsteroidal Anti-inflammatory Drug-Naproxen from Wastewater. Desalination and Water Treatment, 107: 72-84.
  • [10] Kanmaz N., Saloglu D., Hizal J. 2019. Humic Acid Embedded Chitosan/Poly (Vinyl Alcohol) pH Sensitive Hydrogel: Synthesis, Characterization, Swelling Kinetics and Diffusion Coefficient, Chemical Engineering Communications, 206 (9): 1168-1180.
  • [11] Jung C., Oh J., Yoon Y. 2015. Removal of Acetaminophen and Naproxen by Combined Coagulation and Adsorption Using Biochar: Influence of Combined Sewer Overflow Components. Enviromental Science and Pollution Research, 22 (13): 10058-10069.
  • [12] Ozdemir Ç., Önal Y., Erdoğan S., Başar C. 2012. Studies on Removal of Naproxen Sodiıum by Adsorption onto ACF in Batch and Column. Fresenius Ennviromental Bulletin, 21 (1): 84-93.
  • [13] Khazri H., Ghorbel-Abid I., Kalfat R., Ayadi M. 2017. Removal of Ibuprofen, Naproxen and Carbamazapine in Aqueous Solution onto Natural Clay: Equilibrium, Kinetics, and Thermodynamic Study. Applied Water Science, 7 (6): 3031-3040.
  • [14] Bulut Y., Aydın, H. 2005. A Kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination, 194: 259-267.
  • [15] Ranganathan K. 2000. Chromium Removal by Activated Carbons Prepared From Casurina Equisetifolia Leaves. Bioresource Technology, 73: 99-103.
  • [16] Khezami L., Capart R. 2005. Removal Of Chromium (VI) from Aqueous Solution by Activated Carbons: Kinetic and Equilibrium Studies. Journal of Hazardous Materials, 123: 223-231.
  • [17] Mor S., Ravindra K., Bishnoi N.R. 2007. Adsorption of Chromium from Aqueous Solution by Activated Alumina and Activated Charcoal. Bioresource Technology, 98: 954–957.
  • [18] Babel S., Kurniawan T.A. 2004. Cr(VI) Removal from Synthetic Wastewater Using Coconut Shell Charcoal and Commercial Activated Carbon Modified With Oxidizing Agents and/or Chitosan. Chemosphere, 54: 951-967.
  • [19] Amin T.M., Alazba A., Shafiq M. 2015. Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics. Sustainability, 7: 15302-15318.
  • [20] Xin H., Nai-yun G., Qiao-li, Z. 2007. Thermodynamics and Kinetics of Cadmium Adsorption onto Oxidized Granular Activated Carbon. Journal of Environmental Sciences, 19: 1287-1292.