Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var.typhoides’in Hidroksil Radikali ve Hipokloröz Asit Süpürme Aktiviteleri

Çalışmada Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides etanol ekstraktının totalantioksidan kapasitesi ile hidroksil radikali (OH.) ve hipokloröz asit(HOCI) süpürme aktivitesinindeğerlendirilmesi amaçlandı. M. longifolia subsp. typhoides var. typhoides total antioksidan kapasitesi 569±8.57mg AAE/gr olarak belirlendi. Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides etanolekstraktının, hidroksil radikali ve hipokloröz asit süpürücü aktiviteleri incelendiğinde IC50 değerleri ise sırasıyla75.09±2.47 ve 201.43±17.99 µg/mL olarak tesbit edildi. Sonuç olarak M. longifolia subsp. typhoides var. typhoidesetanol ekstraktının total antioksidan kapasitesi ve radikal süpürme aktivitesi değerlendirildiğinde bitkininpotensiyel bir doğal antioksidan kaynağı olabileceği söylenebilir. Ayrıca, oksidatif strese bağlı olarak ortayaçıkabilecek birçok hastalığın önlenmesi veya tedavisinde terapötik ajanlar olarak yüksek etkiye sahip olabileceğidüşünülmektedir.

Hydroxyl Radical and Hypochlorous Acid Scavenging Activity of Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides

The purpose of this study was to investigate the antioxidant potential with hydroxyl radical(OH. ) and hypochlorous acid(HOCI) scavenging activity of the ethanol extract of Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides. The total antioxidant activity was found to be 569 ± 8.57 mg AAE/gr of extract. Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley. IC50 values of typhoides ethanol extract, hydroxyl radical and hypochlorous acid were determined as 75.09±2.47 and 201.43±17.99 µg/mL respectively. As a result, the total antioxidant capacity and radical scavenging activity of the plant ethanol extract can be considered as a potential natural antioxidant source of the plant. It is also thought that it may have high effect as therapeutic agents in the protection or treatment of many diseases due to oxidative stres.

___

  • [1] Özgen U., Mavi A., Terzi Z., Yιldιrιm A., Coşkun M., Houghton P.J. 2006. Antioxidant properties of some medicinal Lamiaceae (Labiatae) species. Pharmaceutical biology, 44 (2): 107- 112.
  • [2] Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5 (1): 9.
  • [3] Kasprzak K.S. 2002. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis1, 3. Free Radical Biology and Medicine, 32 (10): 958-967.
  • [4] Iwasaki A., Gagnon C. 1992. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertility and sterility, 57 (2): 409-416.
  • [5] Letelier M.E., Molina-Berríos A., Cortés-Troncoso J., Jara-Sandoval J., Holst M., Palma K., González-Lira V. 2008. DPPH and oxygen free radicals as pro-oxidant of biomolecules. Toxicology in vitro, 22 (2): 279-286.
  • [6] Alscher R.G., Donahue J.L., Cramer C.L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 100 (2): 224-233.
  • [7] Sevindik M., Akgul H., Pehlivan M., Selamoglu Z. 2017. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen Environ Bull, 26, 4757-4763.
  • [8] Mikaili P., Mojaverrostami S., Moloudizargari M., Aghajanshakeri S. 2013. Pharmacological and therapeutic effects of Mentha longifolia L. and its main constituent, menthol. Ancient science of life, 33 (2): 131.
  • [9] Mimica-Dukic N., Popovic M., Jakovljevic V., Szabo A., Gašic O. 1999. Pharmacological studies of Mentha longifolia phenolic extracts. II. Hepatoprotective activity. Pharmaceutical biology, 37 (3): 221-224.
  • [10] Bandar H., Hijazi A., Rammal H., Hachem A., Saad Z., Badran B. 2013. Techniques for the extraction of bioactive compounds from Lebanese Urtica Dioica. American Journal of Phytomedicine and Clinical Therapeutics, 1 (6): 507-513.
  • [11] Prieto P, Pineda M, Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem, 269: 337-341.
  • [12] Kunchandy E., Rao M.N.A. 1990. Oxygen radical scavenging activity of curcumin. Int. J. Pharmacog, 58: 237-240.
  • [13] Aruoma OI, Halliwell B. 1987. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase. Biochem J 248: 973– 97.
  • [14] Pedraza‐Chaverrí J., Arriaga‐Noblecía G., Medina‐Campos O.N. 2007. Hypochlorous acid scavenging capacity of garlic. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21 (9); 884-888.
  • [15] Gulluce M., Sahin F., Sokmen M., Ozer H., Daferera D., Sokmen A., Ozkan H. 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food chemistry, 103 (4): 1449-1456.
  • [16] Singh S., Das S.S., Singh G., Perotti M., Schuff C., Catalán C.A. 2015. In vitro antioxidant potentials and chemistry of essential oils and oleoresins from fresh and sun-dried Mentha longifolia L. Journal of Essential Oil Research, 27 (1): 61-69.
  • [17] Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 97 (4): 654-660.
  • [18] Abootalebian M., Keramat J., Kadivar M., Ahmadi F., Abdinian M. 2016. Comparison of total phenolic and antioxidant activity of different Mentha spicata and M. longifolia accessions. Annals of Agricultural Sciences, 61 (2): 175-179.
  • [19] Stanisavljevic D.M., Stojicevic S.S., Dordevic S.M., Zlatkovic B.P., Velickovic D.T., Karabegovic I.T., Lazic M.L. 2012. Antioxidant activity, the content of total phenols and flavonoids in the ethanol extracts of Mentha longifolia (L.) Hudson dried by the use of different techniques. Chemical Industry and Chemical Engineering Quarterly, 18 (3): 411-420.
  • [20] Hajlaoui H., Trabelsi N., Noumi E., Snoussi M., Fallah H., Ksouri R., Bakhrouf A. 2009. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World Journal of Microbiology and Biotechnology, 25 (12): 2227-2238.
  • [21] Fatiha B., Didier H., Naima G., Khodir M., Martin K., Léocadie K., Pierre D. 2015. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Industrial crops and products, 74: 722-730.
  • [22] Orhan F., Barış Ö., Yanmış D., Bal T., Güvenalp Z., Güllüce M. 2012. Isolation of some luteolin derivatives from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potencies. Food chemistry, 135 (2): 764-769.
  • [23] Bahadori M.B., Zengin G., Bahadori S., Dinparast L., Movahhedin N. 2018. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). International Journal of Food Properties, 21 (1): 183-193
  • [24] Aksit H., Demirtas I., Telci I., Tarimcilar G. 2013. Chemical diversity in essential oil composition of Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides from Turkey. Journal of essential oil research, 25 (5): 430-437.
  • [25] Ozen T., Telci I., Gul F., Demirtas I. 2017. Chemical Analyzes and Antioxidant Activities of Essential Oils of Four Wild Mentha Species Growing in the Tokat and Its Districts. International Journal of Chemistry and Technology, 1 (1): 46-57.
  • [26] Battino M., Bullon P., Wilson M., Newman H. 1999. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Critical Reviews in Oral Biology & Medicine, 10 (4): 458-476.
  • [27] Valko M., Rhodes C., Moncol J., Izakovic M.M., Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160 (1): 1-40.
  • [28] Pullar J.M., Vissers M.C., Winterbourn C.C. 2000. Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB life, 50 (4‐5): 259-266.
  • [29] Mika D., Guruvayoorappan C. 2011. Myeloperoxidase: the yin and yang in tumour progression. Journal of experimental therapeutics & oncology, 9 (2): 93-100.
  • [30] Panasenko O.M., Gorudko I.V., Sokolov A.V. 2013. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow), 78 (13): 1466-1489
  • [31] Senkardes I., Tuzlaci E. 2014. Some Ethnobotanical Notes from Gundogmus District (Antalya/Turkey). Clinical and Experimental Health Sciences, 4 (2): 63.
  • [32] Arasan S., Kaya I. 2015. Some important plants belonging to asteraceae family used in folkloric medicine in Savur (Mardin/Turkey) area and their application areas. J Food Nutr Res., 3: 337- 340.
  • [33] Dekigai H., Murakami M., Kita T. 1995. Mechanism ofhelicobacter pylori-associated gastric mucosal injury. Digestive diseases and sciences, 40 (6): 1332-1339.
  • [34] Lapenna D., Cuccurullo F. 1996. Hypochlorous acid and its pharmacological antagonism: an update Picture. General pharmacology, 27 (7): 1145-1147.