FLUKA kodu ile 3’’x3’’ NaI(TI) Dedektör Sistemine Kolimatör Etkisinin İncelenmesi

3”x3” NaI(TI) dedektörünün verimliliği ve gama zayıflatma hesaplamaları farklı kolimasyon parametreleri altında incelenmiştir. Bu amaçla, 511 ve 1332 keV enerjili foton demetleri, farklı çaplarda Pb kolimatörü kullanılarak kolime edildi. Bu sistem FLUKA Monte Carlo kodu ile tanımlandı; detektör verimliliği ve gama zayıflama katsayıları simüle edildi.

Investigation of the Collimator Effect on the 3’’x3’’ NaI(TI) Detector System by the FLUKA code

The efficiency of the 3’’x3’’ NaI(TI) detector and gamma attenuation calculations were investigated under the different collimation parameters. In this purpose, photon beams with 511 and 1332 keV energy were collimated by using Pb collimator with different diameters. This system was defined by the FLUKA Monte Carlo code; the detector efficiency and gamma attenuation coefficients were simulated.

___

  • 1. Akkurt, I., Akyıldırım, H. Mavi, B. Kilincarslan, S. Basyigit, C. 2010. Photon attenuation coefficients of concrete includes barite in different rate. Annals of Nuclear Energy, 37: 910–914.
  • 2. Erdem, M., Baykara, O., Doğru, M., Kuluöztürk, F. 2010. A novel shielding material prepared from solid waste containing lead for gamma ray. Radiation Physics and Chemistry, 79, 917–922.
  • 3. Demir, N., Akar Tarim, U., Gurler, O. 2017. Application of FLUKA code to gamma-ray attenuation, energy deposition and dose calculations. International Journal of Radiation Research, 15(1): 123-128.
  • 4. Medhat, M.E., Demir, N., Tarim Akar, U., Gurler, O. 2014. Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods. Radiation Effects & Defects in Solids, Vol. 169, No. 8: 706–714.
  • 5. Ozyurt, O., Altinsoy, N., Karaaslan, Ş.İ., Bora, A., Buyuk, B., Erk, İ. 2018. Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code. Radiation Physics and Chemistry, 144: 271–275.
  • 6. Tekin, H.O. 2016. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Hindawi Publishing Corporation Science and Technology of Nuclear Installations, 7 pages.
  • 7. Tekin, H.O., Singh, V. P., Manici, T., Altunsoy, E. E. 2017. Validation of MCNPX with Experimental Results of Mass Attenuation Coefficients for Cement, Gypsum and Mixture. Journal of Radiation Protection and Research, 42(3): 154-157.
  • 8. Sidhu G. S, Singh K., Singh P. S., Mudahar G. S. 1999. Effect of collimator size and absorber thickness on gamma ray attenuation measurements for bakelite and perspex. Pramana – J. Phys., Vol. 53, No. 5.
  • 9. Ladhaf B. M., Pawar P. P.. 2016. Effect of Absorber Concentration and Collimator Size on Gamma Ray Attenuation Measurements. International Journal of Engineering Technology Science and Research ISSN 2394 – 3386 Vol. 3, Issue 3 March 2016.
  • 10. Çelik N., Özen S.A., Demirtas Ö.F., Çevik U. 2018. The effect of energy resolution of detection instrument on mass attenuation coefficient Journal of Instrumentation, Vol. 13 P10012.
  • 11. Çelik N., Çevik U., Çelik A. 2012. Effect of detector collimation on the measured mass attenuation coefficients of some elements for 59.5–661.6 keV gamma-rays. Nuclear Instruments and Methods in Physics Research B, 281: 8–14.
  • 12. Tam, H.D., Yen, N.T.H., Tran, L.B., Chuong, H.D., Thanh, T.T. 2017. Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code. Applied Radiation and Isotopes, 130, 75–79.
  • 13. Ferrari, A., Sala, P.R., Fasso`, A., Ranft, J. 2005. FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773.
  • 14. Shi, H.-X., Chen, B.-X., Li, T.-Z., Yun, D. 2002. Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Applied Radiation and Isotopes, 57: 517–524.
  • 15. Vlachoudis, V. 2009. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA.Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York.
  • 16. Akkurt, I., Gunoglu, K., Arda, S.S. 2014. Detection Efficiency of NaI(Tl) Detector in 511–1332 keV Energy Range. Science and Technology of Nuclear Installations, Vol. 2014, 5 pages.
  • 17. M. J. Berger, J. H. Hubbell, NBSIR 87-3597, 1987. Photon cross sections on a personal computer. National Institute of Standards, Gaithersburg, MD, USA.