Determination of the effectiveness of carbons obtained from the co-carbonization of duckweed and waste coffee on crystal violet removal

Determination of the effectiveness of carbons obtained from the co-carbonization of duckweed and waste coffee on crystal violet removal

Endüstrinin gelişmesiyle belediye atık sularda endüstriyel boyaların oranı her geçen gün artmaktadır. Onların uzaklaştırılmasında çevre dostu, ekonomik ve yüksek verimli adsorbanların kullanımı son zamanlarda önem kazanmaktadır. Bu çalışma, atık kahve ve belediye atık su arıtma tesisi havuzlarının yüzeyinde oluşan su mercimeği (cDW) birlikte karbonize edilerek atık sularda bulunan kristal violet (CV) giderimi yapıldı. DW ve wC numuneleri 800 °C sıcaklıkta, 90 dak kalma süresi ve 100 ml/dk N2 ortamında boru şeklindeki bir reaktörde birlikte ve ayrı ayrı karbonize edildi. Adsorpsiyon deneysel çalışmaları 0,5 g adsorbent miktarı, 6 pH, 30 °C sıcaklık, 50-100 mg/L başlangıç konsantrasyonu ve 60 dakikalık temas süresinde gerçekleştirildi. Adsorbentlerin karakterizasyonu SEM ve FTIR analizleri yapıldı. FTIR ve SEM analizleri göre DW, wC ve DW/wC adsorbentleri CV boya giderimi için uygundur. En yüksek adsorbsiyon kapasitesi ve CV giderimi DW ve wC'nin birlikte karbonizasyonunda sırasıyla 8.29 mg/L ve %83 oldu. En düşük adsorbsiyon kapasitesi ve CV giderimi wC'nin karbonizasyonunda sırasıyla 2.52 mg/L ve %25 oldu. CV boya giderimi için en etkili adsorbent DW/wC dir.

___

  • [1] K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, “Preparation of high surface area activated carbon from coconut shells using microwave heating,” Bioresour. Technol., vol. 101, no. 15, pp. 6163–6169, Aug. 2010, doi: 10.1016/J.BIORTECH.2010.03.001.
  • [2] M. Olam, “Production of Activated Carbon from Waste PET’ Chars,” Int. J. Environ. Monit. Anal., vol. 10, no. 2, p. 39, 2022, doi: 10.11648/j.ijema.20221002.13.
  • [3] H. Oda and Y. Nakagawa, “Removal of ionic substances from dilute solution using activated carbon electrodes,” Carbon N. Y., vol. 41, no. 5, pp. 1037–1047, Jan. 2003, doi: 10.1016/S0008-6223(03)00013-7.
  • [4] A. Yuan and Q. Zhang, “A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte,” Electrochem. commun., vol. 8, no. 7, pp. 1173–1178, Jul. 2006, doi: 10.1016/J.ELECOM.2006.05.018.
  • [5] A. M. Fuente, G. Pulgar, F. González, C. Pesquera, and C. Blanco, “Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation,” Appl. Catal. A Gen., vol. 208, no. 1–2, pp. 35–46, Feb. 2001, doi: 10.1016/S0926-860X(00)00699-2.
  • [6] S. H. Moon and J. W. Shim, “A novel process for CO2/CH4 gas separation on activated carbon fibers—electric swing adsorption,” J. Colloid Interface Sci., vol. 298, no. 2, pp. 523–528, Jun. 2006, doi: 10.1016/J.JCIS.2005.12.052.
  • [7] R. Baccar, M. Sarrà, J. Bouzid, M. Feki, and P. Blánquez, “Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product,” Chem. Eng. J., vol. 211–212, pp. 310–317, Nov. 2012, doi: 10.1016/J.CEJ.2012.09.099.
  • [8] O. Ioannidou and A. Zabaniotou, “Agricultural residues as precursors for activated carbon production—A review,” Renew. Sustain. Energy Rev., vol. 11, no. 9, pp. 1966–2005, Dec. 2007, doi: 10.1016/j.rser.2006.03.013.
  • [9] H. Haykiri-Acma, S. Yaman, and S. Kucukbayrak, “Gasification of biomass chars in steam–nitrogen mixture,” Energy Convers. Manag., vol. 47, no. 7–8, pp. 1004–1013, May 2006, doi: 10.1016/J.ENCONMAN.2005.06.003.
  • [10] M. Ahmedna, W. E. Marshall, and R. M. Rao, “Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties,” Bioresour. Technol., vol. 71, no. 2, pp. 113–123, Jan. 2000, doi: 10.1016/S0960-8524(99)00070-X.
  • [11] J. A. Maciá-Agulló, B. C. Moore, D. Cazorla-Amorós, and A. Linares-Solano, “Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation,” Carbon N. Y., vol. 42, no. 7, pp. 1367–1370, Jan. 2004, doi: 10.1016/J.CARBON.2004.01.013.
  • [12] A. Khamkeaw, T. Asavamongkolkul, T. Perngyai, B. Jongsomjit, and M. Phisalaphong, “Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance,” Mol. 2020, Vol. 25, Page 4063, vol. 25, no. 18, p. 4063, Sep. 2020, doi: 10.3390/MOLECULES25184063.
  • [13] Z. Hu and M. P. Srinivasan, “Mesoporous high-surface-area activated carbon,” Microporous Mesoporous Mater., vol. 43, no. 3, pp. 267–275, May 2001, doi: 10.1016/S1387-1811(00)00355-3.
  • [14] F. Caturla, M. Molina-Sabio, and F. Rodríguez-Reinoso, “Preparation of activated carbon by chemical activation with ZnCl2,” Carbon N. Y., vol. 29, no. 7, pp. 999–1007, Jan. 1991, doi: 10.1016/0008-6223(91)90179-M.
  • [15] P. Paraskeva, D. Kalderis, and E. Diamadopoulos, “Production of activated carbon from agricultural by-products,” J. Chem. Technol. Biotechnol., vol. 83, no. 5, pp. 581–592, May 2008, doi: 10.1002/JCTB.1847.
  • [16] J. Xu, H. Zhao, A. M. Stomp, and J. J. Cheng, “The production of duckweed as a source of biofuels,” Biofuels, vol. 3, no. 5. Future Science LtdLondon, UK, pp. 589–601, Sep. 09, 2012. doi: 10.4155/bfs.12.31.
  • [17] J. Vymazal, “Constructed Wetlands, Surface Flow,” in Encyclopedia of Ecology, Elsevier, 2008, pp. 765–776. doi: 10.1016/B978-008045405-4.00079-3.
  • [18] D. Yadav, L. Barbora, D. Bora, S. Mitra, L. Rangan, and P. Mahanta, “An assessment of duckweed as a potential lignocellulosic feedstock for biogas production,” Int. Biodeterior. Biodegradation, vol. 119, pp. 253–259, Apr. 2017, doi: 10.1016/j.ibiod.2016.09.007.
  • [19] C. Wang and Q. Lin, “The investigation on combustion behavior of sewage sludge and duckweed blends,” in IOP Conference Series: Earth and Environmental Science, Dec. 2020, vol. 605, no. 1, p. 012026. doi: 10.1088/1755-1315/605/1/012026.
  • [20] X. Li, V. Strezov, and T. Kan, “Energy recovery potential analysis of spent coffee grounds pyrolysis products,” J. Anal. Appl. Pyrolysis, vol. 110, no. 1, pp. 79–87, Nov. 2014, doi: 10.1016/J.JAAP.2014.08.012.
  • [21] C. L. Mendoza Martinez et al., “Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes,” Biomass and Bioenergy, vol. 120, pp. 68–76, Jan. 2019, doi: 10.1016/J.BIOMBIOE.2018.11.003.
  • [22] B. K. Nandi, A. Goswami, A. K. Das, B. Mondal, and M. K. Purkait, “Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent,” Sep. Sci. Technol., vol. 43, no. 6, pp. 1382–1403, Jan. 2008, doi: 10.1080/01496390701885331.
  • [23] O. J. Hao, H. Kim, and P. C. Chiang, “Decolorization of wastewater,” Critical Reviews in Environmental Science and Technology, vol. 30, no. 4. TAYLOR & FRANCIS, pp. 449–505, 2000. doi: 10.1080/10643380091184237.
  • [24] K. P. Singh, S. Gupta, A. K. Singh, and S. Sinha, “Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach,” J. Hazard. Mater., vol. 186, no. 2–3, pp. 1462–1473, Feb. 2011, doi: 10.1016/j.jhazmat.2010.12.032.
  • [25] E. ADAMS, “The antibacterial action of crystal violet*,” J. Pharm. Pharmacol., vol. 19, no. 12, pp. 821–826, Dec. 1967, doi: 10.1111/J.2042-7158.1967.TB09550.X.
  • [26] S. Gülcemal and B. Çetinkaya, “Palladium-EDTA and palladium-EdteH4 catalyzed Heck coupling reactions in pure water,” Turkish J. Chem., vol. 37, no. 5, pp. 840–847, Mar. 2013, doi: 10.3906/kim-1304-12.
  • [27] S. Mani and R. N. Bharagava, “Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety,” Rev. Environ. Contam. Toxicol., vol. 237, pp. 71–104, 2016, doi: 10.1007/978-3-319-23573-8_4.
  • [28] Y. Li, L. Lu, S. Lyu, H. Xu, X. Ren, and Y. A. Levendis, “Activated coke preparation by physical activation of coal and biomass co-carbonized chars,” J. Anal. Appl. Pyrolysis, vol. 156, p. 105137, Jun. 2021, doi: 10.1016/J.JAAP.2021.105137.
  • [29] R. Osama, H. M. Awad, M. G. Ibrahim, and A. Tawfik, “Mechanistic and economic assessment of polyester wastewater treatment via baffled duckweed pond,” J. Water Process Eng., vol. 35, p. 101179, Jun. 2020, doi: 10.1016/J.JWPE.2020.101179.
  • [30] C. Valencia, C. Valencia, F. Zuluaga, M. Valencia, J. Mina, and C. Grande-Tovar, “Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration,” Molecules, vol. 23, no. 10, p. 2651, Oct. 2018, doi: 10.3390/molecules23102651.
  • [31] R. Gusain and S. Suthar, “Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production,” Process Saf. Environ. Prot., vol. 109, pp. 233–241, Jul. 2017, doi: 10.1016/J.PSEP.2017.03.030.
  • [32] J. Varshosaz, F. Hassanzadeh, H. Sadeghi Aliabadi, M. Nayebsadrian, M. Banitalebi, and M. Rostami, “Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia,” Biomed Res. Int., vol. 2014, 2014, doi: 10.1155/2014/525684.
  • [33] D. Pujol et al., “The chemical composition of exhausted coffee waste,” Ind. Crops Prod., vol. 50, pp. 423–429, Oct. 2013, doi: 10.1016/J.INDCROP.2013.07.056.
  • [34] A. P. Craig, A. S. Franca, and L. S. Oliveira, “Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy,” LWT, vol. 47, no. 2, pp. 505–511, 2012, doi: 10.1016/J.LWT.2012.02.016.
  • [35] A. P. Craig, A. S. Franca, and L. S. Oliveira, “Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees,” Food Chem., vol. 132, no. 3, pp. 1368–1374, Jun. 2012, doi: 10.1016/J.FOODCHEM.2011.11.121.
  • [36] Y. Chen, C. Zou, M. Mastalerz, S. Hu, C. Gasaway, and X. Tao, “Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review,” Int. J. Mol. Sci. 2015, Vol. 16, Pages 30223-30250, vol. 16, no. 12, pp. 30223–30250, Dec. 2015, doi: 10.3390/IJMS161226227.
  • [37] A. N. A. El-Hendawy, “Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions,” J. Anal. Appl. Pyrolysis, vol. 75, no. 2, pp. 159–166, Mar. 2006, doi: 10.1016/J.JAAP.2005.05.004.
  • [38] D. Mohan, A. Sarswat, V. K. Singh, M. Alexandre-Franco, and C. U. Pittman, “Development of magnetic activated carbon from almond shells for trinitrophenol removal from water,” Chem. Eng. J., vol. 172, no. 2–3, pp. 1111–1125, Aug. 2011, doi: 10.1016/J.CEJ.2011.06.054.
  • [39] H. ShamsiJazeyi and T. Kaghazchi, “Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal,” J. Ind. Eng. Chem., vol. 16, no. 5, pp. 852–858, Sep. 2010, doi: 10.1016/j.jiec.2010.03.012.
  • [40] Q. T. Ain, S. H. Haq, A. Alshammari, M. A. Al-Mutlaq, and M. N. Anjum, “The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model,” Beilstein J. Nanotechnol., vol. 10, pp. 901–911, Apr. 2019, doi: 10.3762/BJNANO.10.91.
  • [41] R. Goswami and A. Kumar Dey, “Synthesis and application of treated activated carbon for cationic dye removal from modelled aqueous solution,” Arab. J. Chem., vol. 15, no. 11, p. 104290, Nov. 2022, doi: 10.1016/J.ARABJC.2022.104290.