Deneysel Tasarım Yöntemleri İle Bir Santrifüj Pompa Çarkında Dengeleme Deliği Tasarım Optimizasyonu

Bu çalışmanın amacı, rulmanlara gelen eksenel kuvvetleri azaltarak rulman ömrünü uzatmak için pompa çarkına açılacak en uygun dengeleme deliğinin belirlenmesidir. Çalışmada eksenel kuvvetlerin azaltılmasının yanı sıra pompa veriminde meydana gelen değişiklikler de dikkate alınmıştır. Bu çalışma için 1480 rpm hız, 350 m³/h debi ve 51 m basma yüksekliğine sahip tek kademeli santrifüj pompa seçilmiştir. Seçilen pompa çarkı üzerindeki dengeleme deliğinin tasarım optimizasyonu, deneysel tasarım metodu ve Hesaplamalı Akışkanlar Dinamiği (HAD) kullanılarak gerçekleştirilmiştir. HAD analizleri için Ansys Fluent programı kullanılmıştır. Optimum sonuca ulaşmak amacıyla dengeleme deliklerinin çark içerisindeki; delik merkezi açısı, delik çapı, delik merkezi çapı ve adedini belirleyen 4 parametre tespit edilmiş ve Çok Amaçlı Taguchi Yöntemi kullanılarak optimizasyon çalışması gerçekleştirilmiştir. Amaçlar; düşük eksenel yük ve yüksek pompa verimi olarak kabul edilmiştir. HAD sonuçları, varyans analizi (ANOVA) ve sinyal/gürültü (S/N) oranına göre değerlendirilmiştir. Yapılan çalışmalar sonucunda; delik çapının amaçlar üzerinde en etkili parametre olduğu tespit edilmiştir. Optimum tasarımın; belirlenen dört parametre için sırasıyla 0°, 12 mm, 100 mm ve 6 adet olduğu belirlenmiştir.

Design Optimization Of Balancing Hole In A Centrifugal Pump Impeller By Using Experimental Design Methods

The aim of this study is to determine the optimal balancing hole to be drilled into the pump impeller in order to extend the bearing life by reducing the axial forces exposed on the bearings. In this study, as well as reduction of the axial forces, the changes in the pump efficiency are also considered. For this study, a single-stage centrifugal pump having a 1450 rpm speed, 350 m³/h flow rate and 51 m head is chosen. It is foreseen to optimize the design optimization of the balancing holes on the selected pump impeller is implemented by using the method of experimental design and Computational Fluid Dynamics (CFD). Ansys Fluent software is used for CFD analysis. In order to reach the optimum results, four parameters including the hole center angle, hole diameter, hole center diameter and number of balancing holes in the impeller are selected, and the optimization study is carried out by using Multi-Objective Taguchi Method. Low axial force and high pump efficiency are accepted as objectives. CFD results are evaluated according to the analysis of variance (ANOVA) and signal/noise (S/N) ratio. As a result, it is determined that the hole diameter is the most effective parameter on these objectives. The optimum design parameters are found to be 0°, 12 mm, 100 mm and 6 for the parameters given above, respectively.

___

  • [1] R. Spence and J. Amaral-Teixeira, “A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump,” Comput. Fluids, vol. 38, no. 6, pp. 1243–1257, 2009.
  • [2] S. R. Shah, S. V. Jain, R. N. Patel, and V. J. Lakhera, “CFD for centrifugal pumps: A review of the state-of-the-art,” Procedia Eng., vol. 51, pp. 715–720, 2013.
  • [3] M. G. Patel and A. V. Doshi, “Effect of Impeller Blade Exit Angle on The Performance of Centrifugal Pump,” Int J. Emerging Technology and Advanced Engineering, vol. 3, no. 1, pp. 91–99, 2013.
  • [4] L. Tan, B. Zhu, S. Cao, H. Bing, and Y. Wang, “Influence of blade wrap angle on centrifugal pump performance by numerical and experimental study,” Chin. J. Mech. Eng., vol. 27, no. 1, pp. 171–177, 2014.
  • [5] I. Pavlenko, J. Trojanowska, O. Gusak, V. Ivanov, J. Pitel, and V. Pavlenko, “Estimation of the reliability of automatic axial-balancing devices for multistage centrifugal pumps,” Period. Polytech. Mech. Eng., vol. 63, no. 1, pp. 52–56, 2018.
  • [6] P. S. Bolade, S. J. Madki, and kirloskar brothers limited, “Analysis of hydraulic thrusts in centrifugal pump to increase te bearing life,” Int. J. Eng. Res. Technol. (Ahmedabad), vol. V4, no. 08, 2015.
  • [7] S. Budea, “Axial Balance in Centrifugal Pumps-Back Labyrinth Versus Dorsal Vanes,” Hidraulica, vol. 1, pp. 19–24, 2015.
  • [8] B. Mary and F. Cerru, “Axial force modelling and measurement in a single stage centrifugal pump,” in 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 2019.
  • [9] H. Miyashiro and K. Takada, “Axial hydraulic thrust caused by pump starting,” J. Basic Eng., vol. 94, no. 3, pp. 629–635, 1972.
  • [10] S. D. Gatta, S. Salvadori, P. Adami, and L. Bertolazzi, “CFD Study for Assessment of Axial Thrust Balance in Centrifugal Multistage Pumps,” in The 13th International Conference on Fluid Flow Technologies, 6-9 September, Budapest, 2006.
  • [11] K. A. J. Bruurs, B. P. M. van Esch, M. S. van der Schoot, and E. J. J. van der Zijden, “Axial thrust prediction for a multi-stage centrifugal pump,” in Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics, Pumping Machinery, 2017.
  • [12] M. Szlaga, Balancing Axial Force in Centrifugal Pumps with Pump Out Vanes. E3S Web of Conferences, 2019.
  • [13] H. Watanabe, T. Yamashita, S. Watanabe, and Y. Hara, CFD Analysis of Axial Thrust in Three Stages Centrifugal Pump at Design and Partload Conditions, in Asme/Jsme/Ksme 2015 Joint Fluids Engineering Conference, Seoul, 2015.
  • [14] O. Babayigit, M. Ozgoren, M. H. Aksoy, and O. Kocaaslan, “Experimental and CFD investigation of a multistage centrifugal pump including leakages and balance holes,” dwt, vol. 67, pp. 28–40, 2017.
  • [15] H. Pehlivan, Z. Parlak, “Investigation of parameters affecting axial load in an end suction centrifugal pump by numerical analysis,” J. Appl. Fluid Mech., vol. 12, no. 5, pp. 1615–1627, 2019.
  • [16] M. Fathi, M. Raisee, S. A. Nourbakhsh, and H. A. Arani, “The effect of balancing holes on performance of a centrifugal pump: numerical and experimental investigations,” IOP Conf. Ser. Earth Environ. Sci., vol. 240, p. 032017, 2019.
  • [17] G. Boitel, D. Fedala, and N. Myon, “Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds,” IOP Conf. Ser. Earth Environ. Sci., vol. 49, p. 032013, 2016.
  • [18] L. Zhou, W. Shi, W. Li, and R. Agarwal, “Numerical and experimental study of axial force and hydraulic performance in a deep-well centrifugal pump with different impeller rear shroud radius,” J. Fluids Eng., vol. 135, no. 10, p. 104501, 2013.
  • [19] M. Nataraj and V. P. Arunachalam, “Optimizing impeller geometry for performance enhancement of a centrifugal pump using the Taguchi quality concept,” Proc. Inst. Mech. Eng. A: J. Power Energy, vol. 220, no. 7, pp. 765–782, 2006.
  • [20] W. Dong, Z. Liu, H. Zhang, G. Zhang, H. Jiang, and P. Li, “Effects of the balance hole diameter on the flow characteristics of the rear chamber and the disk friction loss in the centrifugal pump,” Processes (Basel), vol. 10, no. 3, p. 613, 2022.
  • [21] X. Cheng, Z. Chang, and Y. Jiang, “Study on The Influence of The Specific Area of Balance Hole on Cavitation Performance of High-Speed Centrifugal Pump,” Journal of Mechanical Science and Technology, vol. 34, no. 8, pp. 3325–3334, 2020.
  • [22] H. Saruhan and M. Kam, “Experimental Spectral Analysis of Split Sleeve Bearing Clearance Effect on A Rotating Shaft System,” Makine Teknolojileri Elektronik Dergisi, vol. 13, no. 4, pp. 1–8, 2016.
  • [23] B. Gökçe and S. Taşgetiren, “Kalite İçin Deney Tasarımı,” Makine Teknolojileri Elektronik Dergisi, vol. 6, pp. 71–83, 2009.
  • [24] M. Savaşkan, Y. Taptık, and M. Ürgen, “Deney Tasarımı Yöntemi İle Matkap Uçlarında Performans Optimizasyonu,” İTÜ DERGİSİ/d, 2010.
  • [25] R. Surace, L. A. C. De Filippis, A. D. Ludovico, and G. Boghetich, “Application of Taguchi method for the multi-objective optimization of aluminium foam manufacturing parameters,” Int. J. Mater. Form., vol. 3, no. 1, pp. 1–5, 2010.
  • [26] M. Kaladhar et al., “Application of Taguchi approach and Utility Concept in solving the Multi- objective Problem when turning AISI 202 Austenitic Stainless Steel,” J. Eng. Sci. Technol. Rev., vol. 4, no. 1, pp. 55–61, 2011.
  • [27] İ. Asiltürk and S. Neşeli, “Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis,” Measurement (Lond.), vol. 45, no. 4, pp. 785–794, 2012.
  • [28] T.-S. Lan, “Taguchi Optimization of Multi-Objective CNC Machining Using TOPSIS,” Inf. Technol. J., vol. 8, no. 6, pp. 917–922, 2009.
  • [29] M. A. Mohamed, Y. H. P. Manurung, and M. N. Berhan, “Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology,” J. Mech. Sci. Technol., vol. 29, no. 6, pp. 2323–2331, 2015.
  • [30] O. Babayigit, M. Ozgoren, M. H. Aksoy, and O. Kocaaslan, “The effect of balance holes to centrifugal pump performance,” AIP Conference Proceedings, vol. 1863, no. 1, pp. 030004, 2017.
  • [31] L. Xian-Hua, Z. Shu-Jia, Z. Bao-Lin, and H. Qing-Bo, “The Study of The k-e Turbulence Model for Numerical Simulation of Centrifugal Pump,” 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, vol. IEEE, pp. 1–5, 2006.
  • [32] A.N. S. Y. Fluent, “ANSYS fluent theory guide 15.0,” ANSYS, 2013.
  • [33] Centrifugal Pumps. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
  • [34] E. U. Mullins, “Recent developments in quality control: An introduction to "Taguchi Methods”,” Niger. J. Technol., vol. 15, no. 1, pp. 1–15, 1991.