A Determination of the Corrosion and Microstructure Properties of AlSi10Mg Material Produced by Different Direct Metal Laser Sintering (DMLS) Process Parameters

A Determination of the Corrosion and Microstructure Properties of AlSi10Mg Material Produced by Different Direct Metal Laser Sintering (DMLS) Process Parameters

Additive Manufacturing (AM) has been developing with increasing interest recently. The development of this technology will accelerate with the increase in material, process, and product quality. It is therefore essential to investigate these shortcomings of additive manufacturing products. In this study, the microstructure and corrosion properties of the material (AlSi10Mg) were investigated by changing the production parameters in the Direct Metal Laser Sintering (DMLS) process. Energy density was considered in parameter selection. Depending on the process parameters, the corrosion, topography, and mechanical properties of the DMLS-AlSi10Mg material were investigated in detail. It has been determined that the corrosion resistance and hardness of the material are directly related to porosity.

___

  • [1] Maamoun, A.H., Elbestawi, M., Dosbaeva, G.K., Veldhuis, S.C., “Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder”. Addit. Manuf. 21, 234–247 (2018). https://doi.org/10.1016/j.addma.2018.03.014
  • [2] Domröse, R., Grünberger, T., “Identification of process phenomena in DMLS by optical in-process monitoring”. (2015)
  • [3] Pantělejev, L., Štěpánek, R., Koutný, D., Paloušek, D., “Mechanical properties of AlSi10Mg alloy processed by SLM”. Mater. Eng. - Mater. inžinierstvo. 24, 108–114 (2018)
  • [4] Yusuf, S.M., Gao, N., “Influence of energy density on metallurgy and properties in metal additive manufacturing”. Mater. Sci. Technol. (United Kingdom). 33, 1269–1289 (2017). https://doi.org/10.1080/02670836.2017.1289444
  • [5] Thijs, L., Montero Sistiaga, M.L., Wauthle, R., Xie, Q., Kruth, J.P., Van Humbeeck, J., “Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum”. Acta Mater. (2013). https://doi.org/10.1016/j.actamat.2013.04.036
  • [6] Buchbinder, D., Meiners, W., Wissenbach, K., Poprawe, R., “Selective laser melting of aluminum die-cast alloy—Correlations between process parameters, solidification conditions, and resulting mechanical properties”. J. Laser Appl. 27, S29205 (2015). https://doi.org/10.2351/1.4906389
  • [7] Zakay, A., Aghion, E., “Effect of Post-heat Treatment on the Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing”. Jom. 71, 1150–1157 (2019). https://doi.org/10.1007/s11837-018-3298-x
  • [8] Palumbo, B., Del Re, F., Martorelli, M., Lanzotti, A., Corrado, P., “Tensile properties characterization of AlSi10Mg parts produced by direct metal laser sintering via nested effects modeling”. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10020144
  • [9] Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., “On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS”. Rapid Prototyp. J. 20, 449–458 (2014). https://doi.org/10.1108/RPJ-03-2013-0028
  • [10] Trevisan, F., Calignano, F., Lorusso, M., Pakkanen, J., Aversa, A., Ambrosio, E.P., Lombardi, M., Fino, P., Manfredi, D., “On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties”. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10010076
  • [11] Oter, Z.C., Coskun, M., Akca, Y., Surmen, O., Yilmaz, M.S., Ozer, G., Tarakci, G., Khan, H.M., Koc, E., “Support optimization for overhanging parts in direct metal laser sintering”. Optik (Stuttg). 181, 575–581 (2019). https://doi.org/10.1016/j.ijleo.2018.12.072
  • [12] Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive manufacturing of metals”. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019
  • [13] Girelli, L., Tocci, M., Gelfi, M., Pola, A., “Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy”. Mater. Sci. Eng. A. 739, 317–328 (2019). https://doi.org/10.1016/j.msea.2018.10.026
  • [14] Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D., “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior”. Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2011.07.067
  • [15] Ghasri-Khouzani, M., Peng, H., Attardo, R., Ostiguy, P., Neidig, J., Billo, R., Hoelzle, D., Shankar, M.R., “Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes”. J. Manuf. Process. 37, 274–280 (2019). https://doi.org/10.1016/j.jmapro.2018.12.005
  • [16] Girelli, L., Tocci, M., Montesano, L., Gelfi, M., Pola, A., “Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy”. IOP Conf. Ser. Mater. Sci. Eng. 264, 0–8 (2017). https://doi.org/10.1088/1757-899X/264/1/012016
  • [17] Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E., “From powders to dense metal parts: Characterization of a commercial alsimg alloy processed through direct metal laser sintering”. Materials (Basel). (2013). https://doi.org/10.3390/ma6030856
  • [18] Kruth, J.P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M., “Binding mechanisms in selective laser sintering and selective laser melting”. Rapid Prototyp. J. 11, 26–36 (2005). https://doi.org/10.1108/13552540510573365
  • [19] Simchi, A., Direct laser sintering of metal powders: “Mechanism, kinetics and microstructural features”. Mater. Sci. Eng. A. (2006). https://doi.org/10.1016/j.msea.2006.04.117
  • [20] Fox, J.C., Moylan, S.P., Lane, B.M., “Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing”. In: Procedia CIRP (2016)
  • [21] Greco, S., Gutzeit, K., Hotz, H., Kirsch, B., Aurich, J.C., “Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density”. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05510-8
  • [22] Girelli, L., Giovagnoli, M., Tocci, M., Pola, A., Fortini, A., Merlin, M., La Vecchia, G.M., “Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing”. Mater. Sci. Eng. A. 748, 38–51 (2019). https://doi.org/10.1016/j.msea.2019.01.078
  • [23] Rashid, R., Masood, S.H., Ruan, D., Palanisamy, S., Rahman Rashid, R.A., Elambasseril, J., Brandt, M., “Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy”. Addit. Manuf. 22, 426–439 (2018). https://doi.org/10.1016/j.addma.2018.05.040
  • [24] Wang, D., Yang, Y., Su, X., Chen, Y., “Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM”. Int. J. Adv. Manuf. Technol. 58, 1189–1199 (2012). https://doi.org/10.1007/s00170-011-3443-y
  • [25] Karimi, P., Sadeghi, E., Ålgårdh, J., Andersson, J., “EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics”. Mater. Charact. 148, 88–99 (2019). https://doi.org/10.1016/j.matchar.2018.11.033
  • [26] Hrabe, N., Quinn, T., “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location”. Mater. Sci. Eng. A. (2013). https://doi.org/10.1016/j.msea.2013.02.065
  • [27] Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M., “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control”. Addit. Manuf. 8, 12–35 (2015). https://doi.org/10.1016/j.addma.2015.07.002
  • [28] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C., “Reducing porosity in AlSi10Mg parts processed by selective laser melting”. Addit. Manuf. 1, 77–86 (2014). https://doi.org/10.1016/j.addma.2014.08.001
  • [29] Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.P., “Process optimization and microstructural analysis for selective laser melting of AlSi10Mg”. 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011. 484–495 (2011)
  • [30] Mukherjee, T., Wei, H.L., De, A., DebRoy, T., “Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys”. Comput. Mater. Sci. 150, 369–380 (2018). https://doi.org/10.1016/j.commatsci.2018.04.027
  • [31] Prashanth, K.G., Debalina, B., Wang, Z., Gostin, P.F., Gebert, A., Calin, M., Kühn, U., Kamaraj, M., Scudino, S., Eckert, J., “Tribological and corrosion properties of Al-12Si produced by selective laser melting”. J. Mater. Res. (2014). https://doi.org/10.1557/jmr.2014.133
  • [32] Shahriari, A., Khaksar, L., Nasiri, A., Hadadzadeh, A., Amirkhiz, B.S., Mohammadi, M., “Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel”. Electrochim. Acta. 339, 135925 (2020). https://doi.org/10.1016/j.electacta.2020.135925
  • [33] Özer, G., Tarakçi, G., Yilmaz, M.S., Öter, Z.Ç., Sürmen, Ö., Akça, Y., Coşkun, M., Koç, E., “Investigation of the effects of different heat treatment parameters on the corrosion and mechanical properties of the AlSi10Mg alloy produced with direct metal laser sintering”. Mater. Corros. (2019). https://doi.org/10.1002/maco.201911171
  • [34] Yılmaz, M.S., Özer, G., Öter, Z.Ç., Ertuğrul, O., “Effects of hot isostatic pressing and heat treatments on structural and corrosion properties of direct metal laser sintered parts”. Rapid Prototyp. J. 27, 1059–1067 (2021). https://doi.org/10.1108/RPJ-10-2020-0245
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü