Comparison of biochemical and antioxidant activities of ultrasonic-assisted extraction with different solvents in olive leaf

Comparison of biochemical and antioxidant activities of ultrasonic-assisted extraction with different solvents in olive leaf

Olive leaves are considered to have great potential as natural sources of antioxidants and phenolic compounds. In this study, dried olive leaves were extracted using four different solvents (water, methanol, ethanol, and 80:20(v/v) methanol-water) with ultrasonic-assisted extraction. The biochemical (total phenolics and flavonoids, total protein, free amino acids, total soluble, and reducing sugars) and antioxidant activities (CUPRAC, DPPH, FRAP, and FIC) of these extracts were evaluated. Total phenolics content was significantly affected by the different solvents and the highest total phenolics content was obtained in methanol-water (234 mg g-1) extraction. The highest total flavonoid (47 mg g-1) and total protein (5.1 mg g-1) content were obtained in methanol extraction. Yield of the free amino acids was lowest in ethanol (1.5 mg g-1), while it was highest in water (2.3 mg g-1) and methanol-water (2.2 mg g-1) extractions. The highest total soluble sugars were obtained from methanol-water (70.4 mg g-1) and ethanol (65.4 mg g-1) extractions, while the highest total reducing sugar contents were obtained from methanol (112.2 mg g-1) and methanol-water (111.6 mg g-1). While methanol-water extraction showed the highest antioxidant capacity with 0.63 mmol TR g-1 CUPRAC value, it also showed the strongest radical scavenging activity with 1.09 mmol TR g-1 DPPH radicals value and 0.065 mmol TR g-1 FRAP potential value. FIC capacity was higher in water than in other solvent extraction methods. Methanol and methanol-water solvents were the most effective solvents for measuring phenolic and antioxidant activities in olive leaves.

___

  • Afzal, S., Chaudhary, N., & Singh, N. K. (2021). Role of soluble sugars in metabolism and sensing under abiotic stress. In T. Aftab & K. R. Hakeem (Eds.), Plant growth regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_14
  • Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science & Emerging Technologies, 17, 120-129. https://doi.org/10.1016/j.ifset.2012.11.008
  • Alarcon-Aguilara, F. J., Roman-Ramos, R., Perez-Gutierrez, S., Aguilar-Contreras, A., Contreras-Weber, C. C., & Flores-Saenz, J. L. (1998). Study of the anti-hyperglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology, 61(2), 101-110. https://doi.org/10.1016/S0378-8741(98)00020-8
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International journal of Food Sciences and Nutrition, 57(5-6), 292-304. https://doi.org/10.1080/09637480600798132
  • Arts, M. J., Haenen, G. R., Wilms, L. C., Beetstra, S. A., Heijnen, C. G., Voss, H. P., & Bast, A. (2002). Interactions between flavonoids and proteins: effect on the total antioxidant capacity. Journal of Agricultural and Food Chemistry, 50(5), 1184-1187. https://doi.org/10.1021/jf010855a
  • Assefa, A. D., & Keum, Y. S. (2017). Effect of extraction solvent and various drying methods on polyphenol content and antioxidant activities of yuzu (Citrus junos Sieb ex Tanaka). Journal of Food Measurement and Characterization, 11(2), 576-585. https://doi.org/10.1007/s11694-016-9425-x
  • Bellakhdar, J., Claisse, R., Fleurentin, J., & Younos, C. (1991). Repertory of standard herbal drugs in the Moroccan pharmacopoea. Journal of Ethnopharmacology, 35(2), 123-143. https://doi.org/10.1016/0378-8741(91)90064-K
  • Bener, M., Şen, F. B., Önem, A. N., Bekdeşer, B., Çelik, S. E., Lalikoglu, M., Aşcı, Y. S., Capanoglu, E., & Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 385, 132633. https://doi.org/10.1016/j.foodchem.2022.132633
  • Berker, K. I., Güçlü, K., Tor, I., & Apak, R. (2007). Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157-1165. https://doi.org/10.1016/j.talanta.2007.01.019
  • Boeing, J. S., Barizão, É. O., Montanher, P. F., de Cinque Almeida, V., & Visentainer, J. V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8(1), 1-9. https://doi.org/10.1186/s13065-014-0048-1
  • Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49, 668-674. https://doi.org/10.1016/j.indcrop.2013.06.009
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Castejón, M. L., Montoya, T., Alarcón-de-la-Lastra, C., & Sánchez-Hidalgo, M. (2020). Potential protective role exerted by secoiridoids from Olea europaea L. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases. Antioxidants, 9(2), 149. https://doi.org/10.3390/antiox9020149
  • Chew, S. Y., Teoh, S. Y., Sim, Y. Y., & Nyam, K. L. (2021). Optimization of ultrasonic extraction condition for maximal antioxidant, antimicrobial, and antityrosinase activity from Hibiscus cannabinus L. leaves by using the single factor experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100321. https://doi.org/10.1016/j.jarmap.2021.100321
  • Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and food Chemistry, 38(3), 674-677. https://doi.org/10.1021/jf00093a019
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V., & Levaj, B. (2020). Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes, 8(9), 1008. https://doi.org/10.3390/pr8091008
  • Eris, A., Gulen, H., Barut, E., & Cansev, A. (2007). Annual patterns of total soluble sugars and proteins related to coldhardiness in olive (Olea europaea L.‘Gemlik’). The Journal of Horticultural Science and Biotechnology, 82(4), 597-604. https://doi.org/10.1080/14620316.2007.11512279
  • Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73(2), 627-650. https://doi.org/10.1016/S0021-9258(18)84277-6
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813-8826. https://doi.org/10.3390/molecules15128813
  • Goulas, V., Papoti, V. T., Exarchou, V., Tsimidou, M. Z., & Gerothanassis, I. P. (2010). Contribution of flavonoids to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts. Journal of Agricultural and Food Chemistry, 58(6), 3303-3308. https://doi.org/10.1021/jf903823x
  • Gouvinhas, I., Machado, N., Sobreira, C., Domínguez-Perles, R., Gomes, S., Rosa, E., & Barros, A. I. (2017). Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules, 22(11), 1986. https://doi.org/10.3390/molecules22111986
  • Gulcin, İ., & Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132
  • Guo, T., Wei, L., Sun, J., Hou, C. L., & Fan, L. (2011). Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chemistry, 127(4), 1634-1640. https://doi.org/10.1016/j.foodchem.2011.02.030
  • Hannachi, H., Benmoussa, H., Saadaoui, E., Saanoun, I., Negri, N., & Elfalleh, W. (2019). Optimization of ultrasound and microwaveassisted extraction of phenolic compounds from olive leaves by response surface methodology. Research Journal of Biotechnology, 14, 7-17.
  • Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food chemistry, 126(4), 1821-1835. https://doi.org/10.1016/j.foodchem.2010.12.026
  • Katalinić, V., Milos, M., Modun, D., Musić, I., & Boban, M. (2004). Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chemistry, 86(4), 593-600. https://doi.org/10.1016/j.foodchem.2003.10.007
  • Khatri, D., & Chhetri, S. B. B. (2020). Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. BioMed Research International, 2020, 7296859. https://doi.org/10.1155/2020/7296859
  • Lafka, T. I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2013). Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods, 2(1), 18-31. https://doi.org/10.3390/foods2010018
  • Lee, Y. L., Yen, M. T., & Mau, J. L. (2007). Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chemistry, 104(1), 1-9. https://doi.org/10.1016/j.foodchem.2006.10.063
  • Lee, Y. P., & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical biochemistry, 14(1), 71-77. https://doi.org/10.1016/0003-2697(66)90057-1
  • Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X., & Yan, G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry, 105(2), 548-554. https://doi.org/10.1016/j.foodchem.2007.04.008
  • Luo, S., Jiang, X., Jia, L., Tan, C., Li, M., Yang, Q., Du, Y., & Ding, C. (2019). In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans. Molecules, 24(4), 704. https://doi.org/10.3390/molecules24040704
  • Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163-167. https://doi.org/10.1016/j.seppur.2011.12.020
  • Muddathir, A. M., Yamauchi, K., Batubara, I., Mohieldin, E. A. M., & Mitsunaga, T. (2017). Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany, 109, 9-15. https://doi.org/10.1016/j.sajb.2016.12.013
  • Özyürek, M., Bektaşoğlu, B., Güçlü, K., & Apak, R. (2008). Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Analytica chimica acta, 616(2), 196-206. https://doi.org/10.1016/j.aca.2008.04.033
  • Packer, L., Rimbach, G., & Virgili, F. (1999). Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Biology and Medicine, 27(5-6), 704-724. https://doi.org/10.1016/S0891-5849(99)00090-8
  • Papoti, V. T., & Tsimidou, M. Z. (2009). Impact of sampling parameters on the radical scavenging potential of olive (Olea europaea L.) leaves. Journal of Agricultural and Food Chemistry, 57(9), 3470-3477. https://doi.org/10.1021/jf900171d
  • Pieroni, A., Heimler, D., Pieters, L., Van Poel, B., & Vlietinck, A. J. (1996). In vitro anti-complementary activity of flavonoids from oliva (Olea europaea L.) leaves. Pharmazie, 51(10), 765-767.
  • Rabeta, M. S., & Faraniza, R. N. (2013). Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. International Food Research Journal, 20(4), 1691-1696.
  • Ribeiro, R. D. A., De Melo, M. M. R. F., De Barros, F., Gomes, C., & Trolin, G. (1986). Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state of Sao Paulo. Journal of Ethnopharmacology, 15(3), 261-269. https://doi.org/10.1016/0378-8741(86)90164-9
  • Sakanaka, S., Tachibana, Y., & Okada, Y. (2005). Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chemistry, 89(4), 569-575. https://doi.org/10.1016/j.foodchem.2004.03.013
  • Sánchez-Gutiérrez, M., Bascón-Villegas, I., Rodríguez, A., Pérez-Rodríguez, F., Fernández-Prior, Á., Rosal, A., & Carrasco, E. (2021). Valorisation of Olea europaea l. Olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods, 10(5), 966. https://doi.org/10.3390/foods10050966
  • Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195, 19-23. https://doi.org/10.1016/S0021-9258(19)50870-5
  • Şahin, S., & Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595-602. https://doi.org/10.1016/j.ultsonch.2012.07.029
  • Talhaoui, N., Gómez-Caravaca, A. M., León, L., De la Rosa, R., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2014). Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’ olive leaves. LWT-Food Science and Technology, 58(1), 28-34. https://doi.org/10.1016/j.lwt.2014.03.014
  • Topuz, S., & Bayram, M. (2022). Oleuropein extraction from leaves of three olive varieties (Olea europaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. Journal of Food Processing and Preservation, 46(6), e15697. https://doi.org/10.1111/jfpp.15697
  • Turkoglu, A., Duru, M. E., Mercan, N., Kivrak, I., & Gezer, K. (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food chemistry, 101(1), 267-273. https://doi.org/10.1016/j.foodchem.2006.01.025
  • Wang, L., Xu, R., Hu, B., Li, W., Sun, Y., Tu, Y., & Zeng, X. (2010). Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chemistry, 123(4), 1259-1266. https://doi.org/10.1016/j.foodchem.2010.05.063
  • Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248. https://doi.org/10.1016/j.foodchem.2009.02.041
  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific.
  • Wissam, Z., Ali, A., & Rama, H. (2016). Optimization of extraction conditions for the recovery of phenolic compounds and antioxidants from Syrian olive leaves. Journal of Pharmacognosy and Phytochemistry, 5(5), 390-394.
  • Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., & Li, H. B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18(1), 96. https://doi.org/10.3390/ijms18010096
  • Yancheva, S., Mavromatis, P., & Georgieva, L. (2016). Polyphenol profile and antioxidant activity of extracts from olive leaves. Journal of Central European Agriculture, 17(1), 154-163. https://doi.org/10.5513/jcea.v17i1.4050
  • Zhang, Q. A., Zhang, Z. Q., Yue, X. F., Fan, X. H., Li, T., & Chen, S. F. (2009). Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 116(2), 513-518. https://doi.org/10.1016/j.foodchem.2009.02.071
  • Zhang, Q., Liu, M., & Ruan, J. (2017). Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar. Frontiers in Plant Science, 8, 291. https://doi.org/10.3389/fpls.2017.00291