A Methodology to Detect Distributed Denial of Service Attacks

Distributed denial of service (DDoS) attacks is one of the most destructive cyber attacks which target the availability of the system when legitimate users try to access the system. Not only computers, but also the growing number of smartphones as well as Internet of Things (IoT) devices are affected by DDoS attacks. There is no wellknown system which effectively stops or prevents DDoS attacks. Designing an effective DDoS detector with high accuracy with low computational overhead is still a very challenging task. In this paper, a methodology, which is used to detect and classify the types of DDoS attacks, is proposed. Our methodology is divided into three parts: pre - processing, feature selection, and classification. First, pre-processing is performed to eliminate some features which are not suitable for our model. Second, most significant features are selected by using Information Gain, Gain Ratio, Correlation Coefficient, and Relief. We declined the number of features from 87 to 20. Finally, various classifiers are used to detect DDoS attacks from the bening ones. The proposed methodology is performed on the CIC-DDoS2019 dataset. The experimental results show that the proposed methodology performed pretty well when it is compared to leading methods in the literature.

Dağıtılmış Hizmet Reddi Saldırılarını Algılamak için bir Metodoloji

Dağıtılmış hizmet reddi (Distributed denial of service- DDoS) saldırıları, sistemin kullanılabilirliğini hedef alarak normal kullanıcıların sisteme erişimini engelleyen en yıkıcı siber saldırılardandır. DDoS saldırılarından sadece bilgisayarlar değil, aynı zamanda çok sayıda akıllı telefon ve Nesnelerin İnterneti (IoT) cihazları da etkilenmektedir. DDoS saldırılarını etkili bir şekilde durduran veya önleyen iyi bilinen bir sistem yoktur. Düşük hesaplama yükü ile yüksek doğrulukta etkili bir DDoS tespit sistemi tasarlamak hala çok zorlu bir iştir. Bu makalede, DDoS saldırı türlerini tespit etmek ve sınıflandırmak için kullanılan bir yöntem önerilmiştir. Metodolojimiz üç bölümden oluşmaktadır: veri ön işleme, özellik seçimi ve sınıflandırma. Öncelikle modelimize uygun olmayan bazı özellikleri elimine etmek için veri ön işleme yapılmıştır. İkinci olarak, en önemli özellikler Bilgi Kazanımı, Kazanç Oranı, Korelasyon Katsayısı ve Relief algoritmaları kullanılarak seçilmiştir. Öznitelik sayısı 87'den 20'ye düşürülmüştür. Son olarak, çeşitli makine öğrenmesi algoritmaları kullanılarak normal ağ trafiği DDoS saldırılarından ayrıştırılmıştır. Ayrıca, DDoS saldırı türlerine göre de sınıflandırma yapılmıştır. Önerilen yöntem, CIC-DDoS2019 veri seti üzerinde test edilmiştir. Deneys el sonuçlar, önerilen yöntemin literatürdeki öncü yöntemlere göre daha iyi performans gösterdiğini doğrulamıştır.

___

  • [1] Ö. Aslan and R. Samet, “Mitigating cyber security attacks by being aware of vulnerabilities and bugs”, 2017 International Conference on Cyberworlds (CW), IEEE, 2017.
  • [2] İnternet: DDoS Evaluation Dataset (CIC-DDoS2019), https://www.unb.ca/cic/datasets/ddos-2019.html, 15.09.2021.
  • [3] S.N. Shiaeles, V. Katos, A.S. Karakos and B.K. Papadopoulos, “Real time DDoS detection using fuzzy estimators”, computers & security 31.6 (2012): 782-790, 2012.
  • [4] M. Ozkan-Okay, R. Samet and Ö. Aslan, “A new feature selection approach and classification technique for current intrusion detection system”, IEEE 6th International Conference O n Computer Science and Engineering (UBMK), 2021.
  • [5] J. Han, P. Jian, and K. Micheline, “Data mining: concepts and techniques”, Elsevier, 2011.
  • [6] İnternet: A. Gupta, “Feature Selection Techniques in Machine Learning”, https://www.analyticsvidhya.com/blog/2020/10/feature-selectiontechniques-in-machine-learning/, 1.1.2022.
  • [7] D. Aksu, S. Üstebay, M.A. Aydin and T. Atmaca, “Intrusion detection with comparative analysis of supervised learning techniques and fisher score feature selection algorithm”, International symposium on computer and information sciences, Springer, Cham, 2018.
  • [8] T.H. Phyu and N.N Oo, “Performance comparison of feature selection methods”, MATEC web of conferences, EDP Sciences, 42, 2016.
  • [9] B. Zhang, T. Zhang and Z. Yu, “DDoS detection and prevention based on artificial intelligence techniques”, 3rd IEEE International Conference on Computer and Communications (ICCC), 2017.
  • [10] R. Doshi, N. Apthorpe and N. Feamster, “Machine learning ddos detection for consumer internet of things devices”, IEEE Security and Privacy Workshops (SPW), 2018.
  • [11] D. Yin, L. Zhang and K. Yang, “A DDoS attack detection and mitigation with software-defined Internet of Things framework”, IEEE Access 6 (2018): 24694-24705.
  • [12] F. A. F. Silveira, F. Lima-Filho, F. S. D. Silva, A. D. M. B. Junior and L. F. Silveira, “Smart detection-IoT: A DDoS sensor system for Internet of Things”, International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE, 2020.
  • [13] J. Li, M. Liu, Z. Xue, X. Fan and X. He, “Rtvd: A real-time volumetric detection scheme for ddos in the internet of things,” IEEE Access 8 (2020): 36191-36201.
  • [14] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-delRincon and D. Siracusa, “LUCID: A practical, lightweight deep learning solution for DDoS attack detection”, IEEE Transactions on Network and Service Management, 17(2), 876-889, 2020.
  • [15] M. Asad, M. Asim, T. Javed, M.O. Beg, H. Mujtaba and S. Abbas, “Deepdetect: detection of distributed denial of service attacks using deep learning”,The Computer Journal, 63(7), 983- 994, 2020.
  • [16] Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu and S. Camtepe, “Ae-mlp: A hybrid deep learning approach for ddos detection and classification”, IEEE Access, 9, 146810-146821, 2021.
  • [17] B. Gupta, A. Rawat, A. Jain, A. Arora and N. Dhami, “Analysis of various decision tree algorithms for classification in data mining”, Int. J. Comput. Appl, 163(8); 15-19, 2017.
  • [18] L. Breiman, “Random forests”, Machine learning 45(1); 5-32, 2001.
  • [19] S.K. Sankaralingam, N.S Nagarajan and A.S. Narmadha, “Energy aware decision stump linear programming boosting node classification based data aggregation in WSN”, Computer Communications, 155, 133-142, 2020.
  • [20] O. Kaynar, H. Arslan, Y. Görmez and Y.E. IŞIK, “Makine öğrenmesi ve öznitelik seçim yöntemleriyle saldırı tespiti”, Bilişim Teknolojileri Dergisi, 11(2), 175-185, 2018.
  • [21] A. H. Wahla, L. Chen, Y. Wang, R. Chen and F. Wu, “Automatic wireless signal classification in multimedia Internet of Things: An adaptive boosting enabled approach”, IEEE Access, 7,160334- 160344, 2019.
  • [22] Ö. Aslan and R. Samet and Ö. Ö. Tanrıöver, “Using a Subtractive Center Behavioral Model to Detect Malware”, Security and Communication Networks, 2020.
  • [23] E. Masum and R. Samet, “Mobil BOTNET İle DDOS Saldırısı”, Bilişim Teknolojileri Dergisi, 11(2), 111-121, 2018.
  • [24] Ö. Aslan and S. Refik, “Investigation of possibilities to detect malware using existing tools”, 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017.
  • [25] R. Chaganti, D. Gupta and N. Vemprala, “Intelligent network layer for cyber-physical systems security”,International Journal of Smart Security Technologies (IJSST), 8(2), 42-58, 2021.
Bilişim Teknolojileri Dergisi-Cover
  • ISSN: 1307-9697
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Gazi Üniversitesi Bilişim Enstitüsü