Use of marble dust in composite slab production: Relationship between roasting conditions of marble dust containing filler mixture and the physical properties of the slab

Use of marble dust in composite slab production: Relationship between roasting conditions of marble dust containing filler mixture and the physical properties of the slab

Marble dust generated during slab cutting as reject causes significant environmental problems due to increased reactive surface area. It has closer size distribution with micronized quartz filler used in composite slab. Owing to its high hardness, micronized quartz production is an energy intensive process. This study was conducted to investigate the applicability of marble dust in composite slab production together with micronized quartz as filler. The filler mixture was roasted to mitigate drawback arising from low hardness of marble dust. XRD characterization revealed that phases in roasted filler were wollastonite, larnite, calcio olivine, quicklime and free quartz depending on the roasting temperature and time. Physical tests were applied to clarify the effect of sinter phases on slab properties. Physical properties were determined to retrogress as the roasting temperature increased to 1100°C possibly due to rate of free lime in roasted filler, and then improved again reaching peak point at 1200°C. They ameliorated by increasing roasting time at 1200°C. Larnite and quartz were determined to be effective on improved physical properties than wollastonite and calcio olivine.

___

  • Abenojar, J., Velasco, F., Bautista, A., Campos, M, Bas, J.A., Torralba, J.M. 2003. Atmosphere influence in sintering process of stainless steels matrix composites reinforced with hard particles. Compos- ite Science and Technology. 63(1), 69-79. DOI: 10.1016/S0266- 3538(02)00179-3
  • Akaogi, M., Yano, M., Tejima, Y., Uijima, M., Kojitani, H. 2004. High-pressure transitions of diopside and wollastonite: Phase equilibria and ther- mochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Physics of the Earth and Planetary Interiors. 143-144, 145-156. DOI: 10.1016/j.pepi.2003.08.008
  • Albalak, R. 2012. Engineered Stone and Methods of Manufacturing Same. U.S. Patent No. 2012/0196087 A1.
  • Arıcı, E., Ölmez, D., Özkan, M., Topçu, N., Çapraz, F., Deniz, G., Altınyay, A. 2019. The improvement of mechanical strength and surface properties on quartz surfaces. Afyon Kocatepe University Journal of Science and Engineering. 19, 326-332.
  • Booncharoen, W., Jaroenworaluck, A., Stevens, R. 2011. A synthesis route to nanoparticle dicalcium silicate for biomaterials research. Journal of Biomedical Materials Research Part B. 99B, 230–238.
  • Borsellino, C., Calabrese, L., Bella, G.D. 2009. Effects of powder concentra- tion and type of resin on the performance of marble composite struc- tures. Construction and Building Materials. 23(5), 1915-1921. DOI: 10.1016/j.conbuildmat.2008.09.005
  • Callister, W.D., Rethwisch, D.G. 2018. Materials Science and Engineering: An Introduction. Wiley. ISBN: 978-1-119-40549-8
  • Cardenas, A., Pineda, Y., Santos, A.S., Vera, E. 2016. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy. Journal of Physics: Conference Series. 687, 1-4. DOI:10.1088/1742-6596/687/1/012025
  • de Bakker, J. 2014. Energy use of fine grinding in mineral processing. Metallurgical and Materials Transactions E. 1, 8–19. DOI: 10.1007/ s40553-013-0001-6
  • Erdem, R.T., Öztürk, A.U. 2012. Effect of marble powder additive on freezing-thaw- ing properties of cement mortar. BEU Journal of Science. 1(2), 85-91.
  • Gazi, A., Skevis, G., Founti, M.A. 2012. Energy efficiency and environmental assessment of a typical marble quarry and processing plant. Journal of Cleaner Production. 32, 10-21. DOI: 10.1016/j.jclepro.2012.03.007
  • Gobechiya, E.R., Yamnova, N.A., Zadov, A.E., Gazeev, V.M. 2008. Calcio-oliv- ine γ-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystal- lography Report. 53(3), 404-408. DOI: 10.1134/S1063774508030073
  • Göktaş, M., Erdemoğlu, M. 2012. Mechanical activation of synthetic wol- lastonite (CaSiO3) production. Proceedings of XIII International Min- eral Processing Symposium. pp.1-7.
  • Güler, T., Polat, E. 2018. Characterization of marble sludge and potential usage areas (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Ap- proaches in Marble Mining, Muğla Metropolitan Municipality Publica- tions. 205-218. ISBN: 978-605-4839-14-8
  • Joesten R. 1977. Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta. 41(5), 649-670. DOI: 10.1016/0016-7037(77)90303-9
  • Kartal, A., Akpınar, S. 2004. Synthesis of wollastonite by using various raw materials. Key Engineering Materials. 264-268, 2469-2472. DOI: 10.4028/www.scientific.net/KEM.264-268.2469
  • Kılıç, Ö., Anıl, M. 2005. Investigating effects of different calcination kilns on lime production. Scientific Mining Journal. 44(4), 19-28.
  • Klosek-Wawrzyn, E., Malolepszy, J., Murzyn, P. 2013. Sintering behavior of kaolin with calcite. Procedia Engineering. 57, 572-582. DOI: 10.1016/j. proeng.2013.04.073
  • Kocabağ, D. 2018. Evaluation of marble industry and marble wastes in the context of sustainable mining (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Approaches in Marble Mining, Muğla Metropolitan Mu- nicipality Publications. 51-92. ISBN: 978-605-4839-14-8
  • Kostova, B., Petkova, V., Kostov-Kytin, V.I., Tzvetanova, Y., Avdeev, G. 2021. TG/DTG/-DSC and high temperature in-situ XRD analysis of natu- ral thaumasite. Thermochimica Acta. 697, 178863. DOI: 10.1016/j. tca.2021.178863
  • Lakshmi, R., Velmurugan, V., Sasikumar, S. 2013. Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combustion Science and Technology. 185(12), 1777–1785. DOI: 10.1080/00102202.2013.835308
  • Lam dos Santos, J.P., Rosa, L.G. and Amaral, P.M. 2011. Temperature ef- fects on mechanical behaviour of engineered stones. Construction and Building Material. 25(1), 171–174. DOI: 10.1016/j.conbuild- mat.2010.06.042
  • Liguori, V., Rizzo, G., Traverso, M. 2008. Marble quarrying: An energy and waste intensive activity in the production of building materials. WIT Transactions on Ecology and the Environment. 208, 197-207. DOI: 10.2495/EEIA080201
  • Liu, J., Duan, C.G., Mei, W.N., Smith, R.W., Hardy, J.R. 2002. Polymorphous transformations in alkaline-earth silicates. The Journal of Chemical Physics. 116(9), 3864-3869. DOI: 10.1063/1.1446043
  • Mäkelä, M., Paananen, T., Kokkonen, T., Makkonen, H., Heino, J., Dahl, O. 2011. Preliminary evaluation of fly ash and lime for use as supplementary ce- menting materials in cold-agglomerated blast furnace briquetting. ISIJ International. 51(5), 776–781. DOI: 10.2355/isijinternational.51.776
  • Manzano, H., Pellenq, R.J.M., Ulm, F.J., Buehler, M.J., van Duin, A.C.T. 2012. Hydration of calcium oxide surface predicted by reactive force field mo- lecular dynamics. Langmuir. 28, 4187-4197. DOI: 10.1021/la204338m
  • Miyake, K., Hirata, Y., Shimonosono, T., Sameshima, S. 2018. The effect of particle shape on sintering behavior and compressive strength of po- rous alumina. Materials. 11, 1137. DOI: 10.3390/ma11071137
  • Moropoulou, A., Bakolas, A., Aggelakopoulou, E. 2001. The Effects of lime- stone characteristics and calcination temperature to the reactivity of the quicklime. Cement and Concrete Research. 31, 633-639. DOI: 10.1016/S0008-8846(00)00490-7
  • Nettleship, I., Shull Jr., J.L., Kriven, W.M. 1993. Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. Journal of the European Ceramic Society. 11(4), 291-298. DOI: 10.1016/0955- 2219(93)90028-P
  • Peng, L., Qin, S. 2018. Mechanical behaviour and microstructure of an arti- ficial stone slab prepared using a SiO2 waste crucible and quartz sand. Construction and Building Materials. 171, 273–280. DOI: 10.1016/j. conbuildmat.2018.03.141
  • Rana, A., Kalla, P., Verma, H.K., Mohnot, J.K. 2016. Recycling of dimensional stone waste in concrete: A review. Journal of Cleaner Production. 135, 312-331. DOI: 10.1016/j.jclepro.2016.06.126
  • Rashid, R.A., Shamsudin, R., Hamid, M.A.A., Jalar, A. 2014. Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies. 2, 77-81. DOI: 10.1016/j.jascer.2014.01.010
  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist. 94, 578-593. DOI: 10.2138/am.2009.3021
  • Rohmawati, L., Sholicha, S.P., Holisa, S., Setyarsih, W. 2019. Identification of phase CaCO3/MgO in Bangkalan dolomite sand as an antibacterial substance. Journal of Physics: Conference Series. 1417, 012001. DOI: 10.1088/1742-6596/1417/1/012001
  • Santos, G.G., Crovace, M.C., Zanotto, E.D. 2019. New engineered stones: Development and characterization of mineral-glass composites. Com- posite Part B. 167, 556-565. DOI: 10.1016/j.compositesb.2019.03.010
  • Sarıışık, G., Özkan, E., Kundak, E., Akdaş, H. 2016. Classification of param- eters affecting impact resistance of natural stones. Journal of Testing and Evaluation. 44(4): 1650-1660. DOI: 10.1520/JTE20140276
  • Tunç, S. 2021. The investigation of the use of marble plant wastes in com- posite slab production. M.Sc. Thesis. Muğla Sıtkı Koçman University.
  • Tuttle, O.F., Harker, R.I. 1957. Synthesis of spurrite and the reaction wol- lastonite+calcite ⇄ spurrite+carbon dioxide. American Journal of Sci- ence. 255(3), 226–234. DOI: 10.2475/ajs.255.3.226
  • Velázquez, A.L.C., Menéndez-Aguado, J.M., Brown, R.L. 2008. Grindability of lateritic nickel ores in Cuba. Powder Technology, 182(1), 113-115. DOI: 10.1016/j.powtec.2007.05.027
  • Witoon, T. 2011. Characterization of calcium oxide derived from waste egg- shell and its application as CO2 sorbent. Ceramics International. 37(8), 3291-3298. DOI: 10.1016/j.ceramint.2011.05.125
  • Zadov, A.E., Gazeev, V.M., Pertsev, N.N., Gurbanov, A.G., Yamnova, N.A., Go- bechiya, E.R., Chukanov, N.V. 2008. Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4). Doklady Earth Science. 423A(9), 1431-1434. DOI: 10.1134/S1028334X08090237