PATLATMA SONUÇLARININ ANALİZİNDE YERSEL LAZER TARAYICILARIN (LiDAR) KULLANIMI

Madencilik amaçlı patlatma uygulamalarında verimliliğin önemli bir ölçütü patlatma sonrası sağlanan parçalanmanın derecesidir. Patlatma sonrası parçalanmanın tespit edilmesi amacıyla günümüze kadar farklı yöntemler kullanılmış ve bu yöntemlerde, ölçüm hataları, uzun işlem süreleri gibi çeşitli sorunlarla karşılaşılmıştır. Bu çalışmada, LiDAR teknolojisi kullanılarak, öncelikle laboratuvar ölçekli yığın üzerinde, daha sonra bir taş ocağında, kırılmış agrega yığını ve patlatma sonrası oluşan yığın üzerinde parça boyutu dağılımı analizi gerçekleştirilmiştir. Tane boyu analizi; yığından yersel lazer tarayıcı yardımıyla nokta bulutu verilerinin alınması, bu verilerle yığının üç boyutlu modelinin bilgisayar ortamında oluşturulması, geliştirilen bir algoritma ile yığını oluşturan parçaların tanımlanması ve boyut dağılımlarının belirlenmesini içermektedir. LiDAR teknolojisinin patlatma sonuçlarının analizinde etkin bir şekilde kullanılabileceği sonucuna varılmıştır

THE USE OF TERRESTRIAL LASER SCANNING (LiDAR) FOR THE ANALYSIS OF BLASTING RESULTS

An important efficiency criterion of the blasting operations in mine production is the degree of fragmentation. Different methods have been used to determine the fragmentation up to the present, however some difficulties such as measurement error and long operation times were encountered. In the study, size distribution analysis using terrestrial laser scanning technology (LiDAR) was firstly applied to laboratory scaled broken rock pile, and then, the method was applied to aggregate pile and blasted rock pile in a quarry. Particle size analysis process contains; obtaining point cloud data of the piles using terrestrial laser scanner, creating three-dimensional computer models of the piles through the various filters and related software, defining the fragments and determining the particle size distribution. It is concluded that LiDAR technology can be used effectively in the determination of the size distribution of the piles for evaluating the blasting results

___

  • Abellán A., Vilaplana J.M., Martínez J., 2008. Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Nşria (Eastern pyrenees, Spain), Eng Geol 88, 136-148.
  • Aksoy, H., Ercanoglu, M., 2006. Determination of the rockfall source in an urban settle-ment area by using a rule-based fuzzy evaluation. Natural Hazards and Earth System 6, 941-954.
  • Bauer A., Paar G., Kaltenböck A., 2005. Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proc first international symposium on geo-information for disaster management, 393-406.
  • Decker J., 2008. Laser scanning techniques in Devil's Slide tunnels. In: Proceedings of the 42nd US rock mechanics symposium, San Francisco.
  • Deliormanlı A.H., Maerz N., Otoo J.N.A., 2014. Using terrestrial 3D laser scanning and optical methods to determine orientations of discontinuities at a granite quarry, International Journal of Rock Mechanics and Mining Sciences, 66, 41-48.
  • Fekete S., Diederichs M., 2013. Integration of three- dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rock masses. International Journal of Rock Mechanics & Mining Sciences 57, 11-23.
  • Feng, Q.H., Röshoff, K., 2004. In-situ mapping and documentation of rock faces using full-coverage 3D laser scanning techniques. International Journal of Rock Mechanics and Mining 41, 379.
  • Gümüş K., 2008. Yersel Lazer Tarayıcılar Ve Konum Doğruluklarının Araştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 134 s.
  • Ingensand H., 2006. Methodological aspects in terrestrial laser-scanning technology. InProceedings of the 3rd IAG Symposium of Geodesy for Geotechnical and Structural Engineeringand 12th FIG Symposium on Deformation Measurements.
  • Kemeny, J., Turner, K., and Norton, B. 2006. LiDAR for Rock Mass Characterization: hardware, software, accuracy, and best practices. Laser and Photogrammetric Methods for Rock Face Characterization workshop, Golden Colorado, June 17-18, 2006, pp. 49-62.
  • Lato M., Kemeny J., Harrap R.M., Bevan G., 2013. Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers & Geosciences 50, 106-114.
  • Maerz, N. H., Youssef, A. M., Otoo, J. N., Kassebaum, T. J., and Duan, Y. 2012. A simple method for measuring discontinuity orientations from terrestrial LiDAR images. Sub. to J. of Environmental and Engineering Geoscience. Feb. 2012.
  • Oparin V.N., Seredovich V.A., Yushkin V. F., Ivanov A.V., Prokop'eva, S.A., 2007. Application of laser scanning for developing a 3D digital model of an open-pit side surface. Journal of Mining Science 43(5), 545-554.
  • Reshetyuk Y., 2006. Investigation of the Influence of Surface Reflectance on the Measurements with the Terrestrial Laser Scanner Leica HDS 3000. ZfV (Zeitschrift fürGeodäsie, Geoinformation und Landmanagement), 131 (2), 96-103.
  • Salvini R., Francioni M., Riccucci S., Bonciani F., Callegari I., 2013. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps. Geomorphology 185, 110-122.
  • Slob S, Hack R, Knapen B, Kemeny J., 2005. A method for automated discontinuity analysis of rock slopes with 3D laser scanning. In: Proceedings of the 84th annual meeting of Transportation Research Board, Washington, DC, 16 pp.
  • Slob S., Hack R., Van Knapen B., Kemeny J., 2004. Automated identification and characterisation of discontinuity sets in outcropping rock masses using 3D terrestrial laser scan survey techniques, In Proceedings of the ISRM Regional Symposium EUROCK 2004 & 53rd Geomechanics Colloquy, Salzburg, 439-443.
  • Sturzenegger M., Stead D., 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts, Engineering Geology 106, 163-182.
  • Teza G., Pesci A., Genevois R., Galgaro A., 2008. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation, Geomorphology 97, 424-437.
  • Waggot S.M., Clegg P., Jones R.R., 2005. Combining Terrestrial Laser Scanning, RTK, GPS and 3D Visualisation: Application of Optical 3D Measurement in Geological Exploration, Proceedings of the 7th Conference on 3-D Optical Measurement Techniques, Vienna, Austria, 3-5 Oct. 2005.
  • Yakar M., Yılmaz H.M., Mutluoğlu Ö., 2008. Lazer Tarama Teknolojisi ve Fotogrametrik Yöntem ile Hacim Hesabı. TÜBİTAK, Proje No: 105M179, 90s.
  • Yanalak M, and Baykal O., 2003. Digital Elevation Model Topographical Data, Journal of Surveying Engineering 129 (2), 56-64.
  • Yanalak M., 2005. Computing Pit Excavation Volume. Journal of Surveying Engineering 131(1), 15-19.