GRANİTİK KAYAÇLARDA MİNERAL ŞEKİL ÖZELLİKLERİ İLE SPESİFİK DEFORMASYON ENERJİSİ ARASINDAKİ İLİŞKİNİN ARAŞTIRILMASI

Kayaçların mekanik özelliklerinden birisi Spesifik Deformasyon Enerjisi olup tek eksenli basınç dayanımı testinde elde edilen gerilme deformasyon eğrisi altında kalan alandan hesaplanmaktadır. Kayaç içerisindeki minerallerin de kayaçların mekanik özelliklerine etkisi vardır. Bu çalışmada mineral şekil özellikleri ile spesifik deformasyon enerjisi arasındaki ilişki araştırılmıştır. Dokuz farklı kayaç numunesi üzerinde basınç dayanımı testleri yapılmış ve her bir kayaç için gerilme deformasyon eğrileri altında kalan alan hesaplanarak spesifik deformasyon enerjisi değeri bulunmuştur. Kayaçlar içerisindeki mineral özellikleri belirlenirken doku katsayısı yaklaşımı kullanılmış ve her bir kayaç için doku katsayısı değeri belirlenmiştir. Doğrusal regresyon analizi yöntemi kullanılarak elde edilen veriler istatistiksel olarak analiz edilmiş ve spesifik deformasyon enerjisi (SEDef) ile doku katsayısı (TC) arasında güçlü bir ilişki bulunmuştur.

INVESTIGATION OF THE RELATIONSHIP BETWEEN THE MINERAL SHAPE PROPERTIES AND DESTRUCTİON SPECIFIC ENERGY IN GRANITIC ROCKS

One of the mechanical property of rocks is destruction specific energy that estimated from the area (integral) under the stress–strain curve in unconfined compression test. The minerals in the rocks are effective on the mechanical properties of the rocks. In this study, the relation between destruction specific energy and mineral shape properties were investigated. The unconfined compressive tests were performed on nine different rock samples and the destruction specific energy values were estimated with calculating the area (integral) under the stress-strain curve for each rock sample. The texture coefficient approach was used for determining of the mineral shape properties and the texture coefficient values were calculated for each rock sample. The results were analyzed with using linear regression analyze method and a strong relation was found between destruction specific energies and the texture coefficients of rocks.

___

  • Atici, U., Ersoy, A., 2007. Evaluation of Destruction Specific Energy of Fly Ash and Slag Admixed Concrete Interlocking Paving Blocks (CIPB). Construction and Building Materials. 22, 1507-1514.
  • Atici, U., Ersoy, A., 2008. Correlation of Specific Energy of Cutting Saws and Drilling Bits with Rock Brittleness and Destruction Energy. Journal of Materials Processing Technology. 209, 2602-2612.
  • Bell, F.G., 1978. The Physical and Mechanical Properties of Fell Sandstones, Northumberland, England. Eng. Geol. 12, 1-29.
  • Çomaklı, R., Çayırlı, S., 2017. Kayaç Dokularındaki Minerallerin Bazı Şekil Özellikleri ile Kayaç Kırılabilirliği Arasındaki İlişkinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Fakültesi Dergisi. 6 (2), 670 - 680.
  • Ersoy, A. ve Waller, M.D., 1995. Textural Characterisation of Rocks. Engineering Geology. 39,123-136.
  • Dube, A.K., Singh, B., 1972. Effect of Humidity on Tensile Strength of Sandstone. J. Mines, Metals Fuels. 20(1), 8-10.
  • Howarth, D.F., Rowlands, J.C., 1986. Development of An Index to Quantify Rock Texture for Qualitative Assessment of Intact Rock Properties. Geotech. Testing J. 9, 169-179.
  • Howarth, D.F., Rowlands, J.C., 1987. Quantitative Assessment of Rock Texture and Correlation with Drillability and Strength Properties. Rock Mech. Rock Eng. 20, 57-85.
  • Hugman, R.H., Friedman, M., 1979. Effects of Texture and Composition on Mechanical Behaviour of Experimentally Deformed Carbonate Rocks. Am. Assoc. Pet. Geol. Bull. 63(9), 1478-1489.
  • ISRM 2007. In: Ulusay, R., Hudson, J.A. (Eds.) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 1974-2006. Ankara, Turkey.
  • Irfan, T.Y., Dearman, W.R., 1978. Engineering Petrography of a Weathered Granite. Q. J. Eng. Geol. 11, 233-244.
  • Öztürk, C. A., Nasuf, E., 2007. Kayaç Dokusal Özelliklerinin Sınıflandırılması ve Kaya Mühendisliği Uygulamaları. İTÜ Mühendislik Dergisi. 6, 69-80.
  • Öztürk, C.A., Nasuf, E., 2013. Strength Classification of Rock Material Based on Textural Properties. Tunneling and Underground Space Technology. 37, 45-54.
  • Özturk, C.A., Nasuf, E., Kahraman, S., 2014. Estimation of Rock Strength from Quantitative Assessment of Rock Texture. J. South Afr. Inst. Min. Metall. 114 (6), 471-480.
  • Shakoor, A., Bonelli, R.E., 1991. Relationship Between Petrographie Characteristics, Engineering Index Properties and Mechanical Properties of Selected Sandstones. Bulletin of Association of Engineering Geology. 28, 55-71.
  • Thuro, K., Plinninger, R.J., 1999. Roadheader Excavation Performance - Geological and Geotechnical Influences, In: Vouille, G. & Berest, P. (eds.): Proc. 9th ISRM Int. Congr. on Rock Mech. Rotterdam, Brookfield (Balkema). 1241-1244.
  • Thuro K. 1997. Prediction of Drillability in Hard Rock Tunnelling by Drilling and Blasting. In: Golser J, Hinkel WJ, Schubert W, editors. World Tunnel Cong. 97,
  • Vienna, Austria: Proceedings. Tunnels for People, Tunnels fur Menschen. 1 Rotterdam, Brookfield, Balkema. 103-8.
  • Thuro K., Spaun, 1996. Drillability in Hard Rock Drill and Blast in Tunnelling. Felsbau 14, 103 - 109. Tiryaki, B., Dikmen., A. Ç., Kadıoğlu, Y. K., Özbilgin, D.,
  • Tiryaki, N., Bölükbaşı, N., 2003, Kayaç Kesmede Keski Performansının Tahmini İçin Doku Katsayısı Yaklaşımı- nın Kullanılabilirliği. Madencilik Dergisi. 42 (2), 27-43.
  • Tuğrul, A., Zarif, I.H., 1999. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey. Engineering Geology. 51, 303-317.
  • West, G., 1981. A Review of Rock Abrasiveness Testing lbr Tunnelling. Proc. Int. Syrup. Weak Rock, Tokyo. Balkema, Rotterdam. 585 593.
  • West, G., 1986. A Relation Between Abrasiveness and Quartz Content for Some Coal Measures Sediments. International Journal of Mining and Geology. 4, 73-78.