FARKLI KIRILMA TEST PROTOKOLLERİNİN KAMARALI BİLYALI DEĞİRMEN MODELLEMESİNDE KULLANIMI

Öğütme devrelerinin modellenmesi, devre tasarımı ve optimizasyonu açısından önem taşımaktadır. Doğru ve güvenilir modeller için malzemenin kırılma dağılımı fonksiyonunun tayin edilmesi önem arz etmektedir. Çalışmada, her bir kamara için ayrı kırılma testlerinin kullanıldığı model yapısı üzerine odaklanılmıştır. Çalışma kapsamında, 2 kamaralı bilyalı değirmen içeren çimento öğütme devresi etrafında ve değirmen içinde örnekleme çalışmaları yürütülmüş ve alınan numunelerin tane boyu dağılımları belirlenmiştir. Sonrasında madde denkliği çalışmaları yürütülmüştür. Değirmenin ilk kamarası için tek tane ağırlık düşürme testleri, ikinci kamarası için ise Hardgrove kırma testleri yürütülmüş ve tane boyuna bağlı kırılma dağılım fonksiyonları hesaplanmıştır. Çalışma Hardgrove tekniğinin bilyalı değirmen modelindeki ilk uygulamasıdır. Kamaralar ayrı olarak mükemmel karışım modeli kullanılarak modellenmiştir. Simülasyon sonuçları ürün tahminlerinin 1. kamarada tutarlı olduğu ve 2. kamarada ise Hardgrove testinin tek tane testine göre daha olumlu sonuçlar verdiğini göstermiştir.

THE USE OF DIFFERENT BREAKAGE TEST PROTOCOLS IN MULTICOMPARTMENT BALL MILL MODELLING

Modelling of grinding circuits is crucial for circuit design and optimization. Determination of breakage distribution function of the materials is important for accurate and reliable modelling. In this study, the model structure was focused on using separate breakage tests for each chamber. Within the study, sampling studies were performed around the grinding circuit containing 2-chamber ball mill and inside the mill and, particle size distributions of collected samples were determined. Then mass balance studies were performed. Single particle drop weight test for the chamber-1 while Hardgrove test for the second chamber of the mill was carried out then size-dependent breakage distribution functions were calculated. The study is the first application of using Hardgrove technique in the ball mill model. Each chamber was modelled separately by using Perfect Mixing Model. Simulation results showed that the product estimations were accurate for the chamber-1 that the Hardgrove test was suitable for the chamber-2.

___

  • Altun, O., 2016. Simulation Aided Flow Sheet Optimization of a Cement Grinding Circuit by Considering the Quality Measurements. Powder Technology, 301, 1242-1251.
  • Austin, L. G., Luckie, P. T., Wightman, D., 1975. Steady-state Simulation of a Cement-milling Circuit. Int. J. Miner. Process., 2, 127–150.
  • Austin, L. G., Weller K. R., 1982. Simulation and Scale-up of Wet Ball Mills. XIV International Mineral Processing Congress, October 17-23, Toronto, Canada, 8.1-8.24.
  • Austin, L. G., Luckie, P. T., Shoji, K., Rogers, R. S. C., Brame, K., 1984. A Simulation Model for an Air-Swept Ball Mill Grinding Coal. Powder Technol., 38, 255–266.
  • Banini, G. A., 2000. An Integrated Description of Rock Breakage in Comminution Machines. PhD Thesis, University of Queensland (JKMRC), Australia.
  • Barrios, G. K. P., Carvalho, R. M., Tavares, L. M., 2011. Extending Breakage Characterization to Fine Sizes by Impact on Particle Beds. Mineral Processing and Extractive Metallurgy, 120, 37-44.
  • Benzer, A. H., Ergun, S. L., Oner, M., Lynch, A. J., 2001. Simulation of Open Circuit Clinker Grinding. Miner. Eng., 14 (7), 701–710.
  • Bond, F. C.,1961. Crushing and Grinding Calculations. Allis-Chalmers Industrial Press Department. Broadbent, S. R., Callcott, T. G., 1956. A Matrix of Processes Involving Particle Assemblies. Phil. Trans. R. Soc. Lond., Ser., A, 249, 99-123.
  • Dundar, H., Benzer, H., Aydogan, N. A., Altun, O., Toprak, N. A., Ozcan, O., Eksi, D., Sargin, A., 2011. Simulation Assisted Capacity Improvement of Cement Grinding Circuit: Case Study Cement Plant. Miner. Eng., 24, 205–210.
  • Eksi, D., Benzer, H., Sargın, A., Genc, O., 2011. A New Method for Determination of Fine Particle Breakage. Minerals Engineering, 24, 216-220.
  • Epstein, B., 1948. Logarithmico-Normal Distribution in Breakage of Solids. Industrial and Engineering Chemistry, 40 (12), 2289-2291.
  • Fandrich, R. G., Clout, J. M. F., Bourgeois, F. S., 1998. The CSIRO Hopkinson Bar Facility for Large Diameter Particle Breakage. Minerals Engineering, 11 (39), 803- 890.
  • Gao, M. E., Forssberg, K. S. E., 1990. Simulation of Batch Grinding of Iron Ore. Trans. Inst. Min. Metall., l 99, 142-C146.
  • Gardner, R. P., Austin L. G., 1962. A Chemical Engineering Treatment of Batch Grinding. In: H.Rumpf and D. Behrens (Editors), Proceedings, 1st European Symp. Zerkeinern. Verlag Chemie, Weinheim, 217-247.
  • Genç, Ö., 2002. Klinker ve Çimento Katkılarının Kırılma Dağılım Fonksiyonlarının İncelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Maden Mühendisliği, Türkiye.
  • Genc, O., 2015. Optimization of a fully air-swept dry grinding cement raw meal ball mill closed circuit capacity with the aid of simulation. Miner. Eng., 74, 1075-1081.
  • Herbst, J.A, Fuerstenau D.W., 1968. The Zero Order Production of Fines in Comminution and its Implications in Simulation. Trans. AIME., 241, 538-549.
  • Huang, Y. H., Chang, Y. L., Fleiter, T., 2016. A Critical Analysis of Energy Efficiency Improvement Potentials in Taiwan’s Cement Industry. Energy Policy, 96, 14-26.
  • Jankovic, A., Valery, W., Davis, E., 2004. Cement Grinding Optimisation. Miner. Eng., 17,41–50.
  • Kelsall, D. F., Reid K. J., 1965. The Derivation of a Mathematical Model for Breakage in a Small Continuous Wet Ball Mill. Proc. A.I. Ch. E./I.Chem. E. Joint Meeting, London, June, Section 4, 14-20.
  • Krajcinovic, D., 1996. Damage Mechanics. Elsevier, Oxford, UK, 159-166.
  • Krogh, S. R., 1978. Determination of Crushing and Grinding Characteristics Based on Testing of Single Particles. Transactions AIME/SME, 266: 1957-1962.
  • Lynch, A. J., 1977. Mineral Crushing and Grinding Circuits, Their Simulation, Optimization, Design and Control. Elsevier Scientific Publishing Co., Amsterdam, 1-65.
  • Madlool, N. A., Saidur, R., Hossain, M. S., Rahim, N. A., 2011. A Critical Review on Energy Use Savings in the Cement Industries. Renewable and Sustainable Energy Reviews, 15, 2042-2060.
  • Pauw, O. G., Maré M. S., 1988. The Determination of Optimum Impact-Breakage Routes for an Ore. Powder Technology, 54, 3-13.
  • Shi, F., Kojovic, T., 2007. Validation of A Model for Impact Breakage Incorporating Particle Size Effect. International Journal of Mineral Processing, 82, 156-163.
  • Schöenert, K., 1972. Role of Fracture Physics in Understanding Comminution Phenomena. Transactions of Society of Mining Engineers AIME, 252, March, 21-26.
  • Stewart, P. S. B., Restarick, C. J., 1971. A Comparison of Mechanism of Breakage in Full Scale and Laboratory Scale Grinding Mills. Proc. Australas. Inst. Min. Metall., 239, 81-92.
  • Tavares, L. M., King R. P., 1998. Single-particle Fracture Under Impact Loading. International Journal of Mineral Processing, 54, 1-28.
  • Vogel, L., Peukert, W., 2003. Breakage Behaviour of Different Materials – Construction of a Mastercurve for the Breakage Probability. Powder Technology. 129, 101-110.
  • Vogel, L., Peukert, W., 2004. Determination of Material Properties Relevant to Grinding by Practicable Labscale Milling Tests. International Journal of Mineral Processing, 74, 329-338.
  • Whiten, W. J., 1974. A Matrix Theory of Comminution Machines. Chemical Engineering Science, 29, 588- 599.
  • Whiten, W. J., 1976. Ball Mill Simulation Using Small Calculators. Proc. Australas. Inst. Min, Metall., 258, 47-53.
  • Xie, W., He, Y., Luo, C., Zhang, X., Li, H., Wang, H., Shi, F., 2015. Energy-Size Reduction of Coals in the Hardgrove Machine. International Journal of Coal Preparation and Utilization, 35, 51-62.
  • Yashima, S., Kanda Y., Sano S., 1987. Relationships Between Particle Size and Fracture Energy or Impact Velocity Required to Fracture as Estimated from Single Particle Crushing. Powder Technology, 51, 277-282.