An investigation on characterization and floation behavior of a transitional ore containing Galena and Pb Oxide minerals

Bu çalışmada hem sülfürlü hem de oksit yapıdaki Pb minerallerini barındıran, geçiş zonuna ait bir kurşun cevherinin flotasyon davranışı incelenmiştir. Detaylı bir mineraloji analizi yapılarak kurşun ve gang mineralleri tespit edilmiştir. Kurşun minerallerinden galen ve serüzit ile birlikte plumbogummit belirlenmiş olup, oksit ve sülfürlü kurşun minerallerinin birlikte bulunduğu bir yapı görülmektedir. Flotasyon testlerinde, öncelikle tane boyutunun etkisi incelenmiş, daha sonra sülfürleştirici, toplayıcı ve köpürtücü reaktiflerin türlerinin kurşun flotasyon üzerindeki etkisi araştırılmıştır. Flotasyon testlerinde potasyum amil ksantat, modifiye merkaptan (Aero 412) ve köpürtücü (Dow250) birlikte kullanıldığı durumda en yüksek verime ulaşılmıştır. Flotasyon süresini kısaltmak ve görece iri boyutta serbestleşen kurşun tanelerinin yüzdürülmesi amacıyla flaş flotasyonun etkisi araştırılarak en uygun açık devre tasarımı yapılmıştır. En iyi flotasyon performansının elde edildiği koşularda kapalı devre flotasyon testi yapılmış ve tesis koşullarında elde edilebilecek nihai konsantre tenör ve verimleri belirlenmiştir.

An investigation on characterization and floation behavior of a transitional ore containing Galena and Pb Oxide minerals

Flotation behavior of a lead ore sample containing both sulfide and oxide Pb minerals taken from transition zone was investigated. Detailed mineralogical analyses were conducted to determine the type of lead and gangue minerals. The results revealed that galena, cerussite and pulmbogummite were the major lead minerals and observed in close association. In the flotation tests, following determination of the optimum particle size, effects of sulfidization, type of collector, and frother were examined. Potassium amyl xanthate, a modified mercaptan (Aero 412), and and the frother (Dow250) produced the best results. Use of Flash flotation was tested to reduce the flotation time and recover the fast floating liberated galena particles at coarse particle size. A locked cycle flotation test was conducted using the optimum flotation conditions to determine grade and recovery of the final concentrate that can be produced in plant scale operation.

___

  • Abkhoshk, E., Jorjani, E., Al-Harahsheh, M., Rashchi, F., Naazari, M. 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. 149, 153-167.
  • Bulatovic, S. 2010. Handbook of Flotation Reagent Chemistry, Theory and Practice Volume 2: Flotation of Gold, PGM and Oxide Minerals. Elsevier.
  • Elizondo-Álvarez, M. A., Uribe-Salas, A., Nava-Alonso, F. 2020. Flotation stud- ies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4 ) with hy- droxamic acids as collectors. Minerals Engineering. 155, 106456.
  • Fa, K., Miller, J., Jiang, T., Li, G. 2005. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores. Trans. Nonferrous Met. Soc. China. 15 (5), 1138-1144.
  • Farrokhpay, S., Zanin, M. 2012. An investigation into the effect of water qual- ity on froth stability. Advanced Powder Technology. 23 (4), 493-497
  • Feng, Q., Wen, S., Zhao, W., Wang, Y., Cui, C. 2015. Contribution of chloride ions to the sulfidization flotation of cerussite. Minerals Engineering. 83, 128-135.
  • Feng, Q. C., Wen, S. M., Zhao, W. J., Cao, Q. B., Lü, C. 2016. A novel method for improving cerussite sulfidization. International Journal of Minerals, Metallurgy and Materials. 23 (6), 609-617.
  • Fuerstenau, M. C., Olivas, S. A., Herrera-Urbina, R. Han, K. N., 1987. The sur- face characteristics and flotation behavior of anglesite and cerussite. International Journal of Mineral Processing. 20 (1-2), 73-85.
  • Herrera-Urbina, R., Sotillo, F., Fuerstenau, D. 1998. Amyl Xanthate uptake by natural and sulfide-treated cerussite and galena. International Journal of Mineral Processing. 55 (2), 113-128.
  • Herrera-Urbina, R., Sotillo, F. J., Fuerstenau, D. W. 1999. Effect of sodium sul- fide additions on the pulp potential and amyl xanthate flotation of ce- russite and galena. International Journal of Mineral Processing. 55(3), 157-170.
  • Li, J., Liu, S., Liu, D., Liu, R., Liu, Z., Jia, X., Chang, T. 2020. Sulfidization mecha- nism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO3/PbS core-shell particles. Minerals Engineering. 153, 106400.
  • Liu, C., Zhang, W., Song, S., Li, H., Jiao, X. 2019. A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite. Powder Technology. 344, 103-107.
  • Liu, R., Liu, D., Li, J., Liu, S., Liu, Z., Gao, L., Jia, X., Ao, S. 2020. Improved under- standing of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation. Colloids and Surfaces A: Physico- chemical and Engineering Aspects. 124508.
  • Marabini, A., Ciriachi, M., Plescia, P., Barbaro, M. 2007. Chelating reagents for flotation. Minerals Engineering. 20 (10), 1014-1025.
  • Önal, G., Bulut, G., Gül, A., Kangal, O., Perek, K.T. Arslan, F., 2005. Flotation of Aladag oxide lead–zinc ores. Minerals Engineering. 18 (2), 279–282.
  • Somasundaran, P., Lou, A. 1999. Oxide Mineral Flotation Fundementals, Ad- vances in Flotation Technology, ed. B. K. Parekh, & J. D. Miller, SME, s. 23-43.
  • Thomas, W. 2010. Mining Chemicals Handbook. 2010 Edition, West Patter- son, NJ: Cytec Industries Inc.
  • Wills, B., Napier-Munn, T. 2006. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Re- covery. 7th Edition. Butterworth-Heinemann, s. 278.