Gauss Filtreleri Kullanılarak Geliştirilen Bölge Temelli Yeni Bir Aktif Kontur Yöntemi
Aktif kontur yöntemleri görüntü bölütlemede sıklıkla kullanılmaktadır. Bu yöntemler kenar temelli ve bölge temelli yöntemler olarak ikiye ayrılabilir. Yöntemlerin her ikisi de nesne sınırlarını elde etmek için ham görüntü verisini kullanmaktadır. Önerilen yöntemler başlangıç kontur konumu, parametre bağımlılığı, gürültü duyarlılığı ve düzensiz görüntü yoğunlukları gibi bazı zorlu problemlere sahiptir. Bu çalışmada, orijinal ACM with SBGFRLS yönteminin α parametresinin otomatik olarak hesaplanmasını sağlayan yeni bir yaklaşım geliştirilmiştir. Bu parametre giriş görüntüsünün gauss türev filtreleri kullanılarak otomatik olarak hesaplanmıştır. Hesaplanan parametre düzey küme fonksiyonunda iteratif olarak kullanılmıştır. Deneysel sonuçlar, iyileştirilmiş ACM with SBGFRLS yönteminin daha yüksek bölütleme doğrulukları sağladığını göstermektedir.
A New Region Based Active Contour Method Developed Using Gauss Filters
Active contour methods are often used in image segmentation. These methods can be divided into edge-based and region-based methods. Both methods use generally raw image data to obtain objects boundaries. The proposed methods have some challenging problems such as the initial contour position, parameter dependency, noise sensitivity and irregular image intensities. In this paper, a new approach has been developed that provides automatic calculation of the α parameter of the original ACM with SBGFRLS method. This parameter is calculated automatically using the gaussian derivative filters of the input image. The calculated parameter is used iteratively in the level set function. The experimental results show that the improved ACM with SBGFRLS method provides higher segmentation accuracies.
___
- Abdou, I. E., & Pratt, W. K. (1979). Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE, 67(5), 753–763.
- Arrieta, C., Uribe, S., Sing-Long, C., Hurtado, D., Andia, M., Irarrazaval, P., & Tejos, C. (2017). Simultaneous left and right ventricle segmentation using topology preserving level sets. Biomedical Signal Processing and Control, 33, 88–95.
- Caselles, V., Catté, F., Coll, T., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerische Mathematik, 66(1), 1–31.
- Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours. International Journal of Computer Vision, 22(1), 61–79.
- Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.
- Chen, L., Zhou, Y., Wang, Y., & Yang, J. (2006). GACV: Geodesic-Aided C–V method. Pattern Recognition, 39(7), 1391–1395.
- Chen, Y., Yue, X., Xu, R. Y. Da, & Fujita, H. (2017). Region scalable active contour model with global constraint. Knowledge-Based Systems, 120, 57–73.
- Iqbal, E., Niaz, A., Memon, A. A., Asim, U., & Choi, K. N. (2020). Saliency-Driven Active Contour Model for Image Segmentation. IEEE Access.
- Liu, C., Liu, W., & Xing, W. (2019). A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation. Journal of Visual Communication and Image Representation, 59, 89–107.
- Melonakos, J., Pichon, E., Angenent, S., & Tannenbaum, A. (2008). Finsler active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 412–423.
- Niu, S., Chen, Q., de Sisternes, L., Ji, Z., Zhou, Z., & Rubin, D. L. (2017). Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognition, 61, 104–119.
- Zhang, K., Song, H., & Zhang, L. (2010). Active contours driven by local image fitting energy. Pattern Recognition, 43(4), 1199–1206.
- Zhang, K., Zhang, L., Song, H., & Zhou, W. (2010). Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing, 28(4), 668–676.