Zeytinyağı Endüstrisi Atıksularının Kitosan ile Koagülasyonunda Box-Behnken İstatistiksel Deney Tasarım Yönteminin Uygulanması

Zeytinyağı üretimi birçok Akdeniz ülkesi için en önemli tarımsal faaliyetlerden biridir ve ekonomik olarak önemlidir. Zeytinyağı endüstrisi atıksuyu (karasu), zeytinyağı üretim aşamalarında meydana gelen sayısız işlemden kaynaklanan önemli bir sıvı atıktır. Karasuyun bertarafı, özellikle yüksek organik madde, askıda katı madde, fenolik bileşik içeriği ve asidik pH değeri ile Akdeniz Bölgesinde ciddi bir çevresel sorundur. Bu çalışmada karasuyun kitosan koagülasyonu ile kimyasal olarak ön arıtımı araştırılmıştır. Kitosan ile koagülasyonun Kimyasal Oksijen İhtiyacı (KOI) ve Toplam Katı Madde (TKM) giderme verimleri üzerindeki etkisi Box-Behnken istatistiksel deney tasarımı ile belirlenmiştir. Bu yöntem, üç bağımsız değişkenin (kitosan konsantrasyonu, yavaş karıştırma ve çökeltme süresi) tepki fonksiyonları (KOI ve TKM verimliliği) üzerindeki etkilerini araştırmak ve KOI giderme verimini en üst düzeye çıkaran optimum koşulları belirlemek için kullanılmıştır. Çalışma kapsamında Design Expert programı kullanılmış, gözlemlenen ve tahmin edilen KOİ ve TKM giderme verimleri arasındaki korelasyon katsayıları (R2) sırasıyla 0.979 ve 0.9585 olarak bulunmuştur. Yapılan deneysel çalışmalar sonucunda en yüksek KOİ giderme veriminin (%53) elde edildiği koşullar; 600 mg/L kitosan konsantrasyonu, 45 dakika yavaş karıştırma süresi ve 60 dakika çökeltim süresi olarak bulunmuştur. TKM giderimi için en yüksek giderme verimi (%73) ise, 600 mg/L kitosan konsantrasyonu, 45 dakika yavaş karıştırma süresi ve 120 dakika çökeltim süresinde elde edilmiştir.

Application of Box-Behnken Statistical Design Method in Chitosan Coagulation of Olive Mill Wastewater

Olive oil production is one of the most important agricultural activities and is economically important for many Mediterranean countries. Olive oil mill wastewater (OMW) is an important liquid waste resulting from the numerous processes that occur during the olive oil production stages. OMW disposal is a serious environmental problem in the Mediterranean region, especially with its high organic matter, suspended solids, phenolic compound content and acidic pH value. In this study, chemical pretreatment of OMW by chitosan coagulation was investigated. The effect of chitosan coagulation on Chemical Oxygen Demand (COD) and Total Solid (TS) removal efficiencies were determined by Box-Behnken statistical experiment design. This method has been used to investigate the effects of three independent variables (chitosan concentration, slow mixing and precipitation time) on the response functions (COD and TS removal efficiencies) and to determine optimum conditions that maximize COD and TS removal efficiencies. Within the scope of the study, the Design expert program was used, and the correlation coefficient (R2) between the observed and estimated COD and TS removal efficiencies was found to be 0.979 and 0.9585, respectively. As a result of the experimental studies, the conditions in which the highest COD removal efficiency (53%) were obtained were 600 mg/L chitosan concentration, 45 minutes slow mixing time and 60 minutes precipitation time. The highest removal efficiency (73%) for TS removal was obtained at a chitosan concentration of 600 mg/L, a slow mixing time of 45 minutes and a precipitation time of 120 minutes. 

___

  • Yay A. S. E., Oral H. V., Onay T. T., & Yenigün O. (2012). A Study on Olive Oil Mill Wastewater Management in Turkey: A Questionnaire and Experimental Approach. Resource Conservation Recycling, 60, 64-71.
  • Amor C., Lucas M. S., García J., Dominguez J. R., De Heredia J. B., & Peres J. A. (2015). Combined Treatment of Olive Mill Wastewater by Fenton's Reagent and Anaerobic Biological Process. Journal of Environmental Science and Healt: Part A, 50, 161-168. Ochando-Pulido J.M., & Martínez-Ferez P., (2017). Experimental Design Optimization of Reverse Osmosis Purification of Pretreated Olive Mill Wastewater. Science of Total Environment, 587–588, 414–422.
  • Paraskeva P., & Diamadopoulos E. (2006). Technologies for Olive Mill Wastewater (OMW) Treatment: A Review. Journal of Chemical Technology and Biotechnology, 81, 1475–1485.
  • Mantzavinos D., & Kalogerakis N. (2005). Treatment of Olive Mill Effluents: Part I. Organic Matter Degradation by Chemical and Biological Processes: An Overview. Environmental International, 31, 289–295.
  • Giannis A., Kalaitzakis M., & Diamadopoulos E. (2007). Electrochemical Treatment of Olive Mill Wastewater. Journal of Chemical Technology and Biotechnology, 82, 663–671.
  • Iakovides I. C., Pantziaros A. G., Zagklis D. P., & Paraskeva C.A. (2016). Effect of Electrolytes/Polyelectrolytes on the Removal of Solids and Organics from Olive Mill Wastewater. Journal of Chemical Technology and Biotechnology, 91 (1), 204-211.
  • Pelendridou K., Michailides M. K., Zagklis D. P., Tekerlekopoulou A. G., Paraskeva C. A., & Vayenas D. V. (2014). Treatment of Olive Mill Wastewater using a Coagulation-Flocculation Process either as a Single Step or as Post-Treatment after Aerobic Biological Treatment. Journal of Chemical Technology Biotechnology, 89, 1866–1874.
  • Sarika R., Kalogerakis N., & Mantzavinos D. (2005). Treatment of Olive Mill Effluents. Part II. Complete Removal of Solids by Direct Flocculation with Polyelectrolytes. Environmental International, 31, 297–304.
  • Alver A., Bastürk E., Kılıc A., & Karatas M. (2015). Use of Advance Oxidation Process to Improve the Biodegradability of Olive Oil Mill Effluents. Process Safety and Environmental Protection, 98, 319–324.
  • Rizzo L., Lofrano G., Grassi M., & Belgiorno V. (2008). Pretreatment of Olive Mill Wastewater by Chitosan Coagulation and Advanced Oxidation Processes. Seperation and Purification Technology, 63, 648–653.
  • Bergamasco R., Konradt-Moraes L. C., Vieira M. F., Fagundes-Klen M. R., & Vieira A. M. S. (2011). Performance of a Coagulation-Ultrafiltration Hybrid Process for Water Supply Treatment. Chemical Engineering Journal, 166, 483-489.
  • Rice E. W., Baird R. B., & Eaton A. D. (2017). Standard Methods for the Examination of Water and Wastewater (23rd Edition). American Public Health Association, American Water Works Association, Water Environment Federation.
  • Syafalni S., Abustan A., Zakaria S. N. F., Zawawi M. H., & Rahim R. A. (2012). Raw Water Treatment ısing Bentonite-Chitosan as a Coagulant. Water Supply, 12 (4), 480–488.
  • Ay F., Catalkaya E. C., & Kargi F. (2009). A statistical Experiment Design Approach for Advanced Oxidation of Direct Red Azo-Dye by Photo-Fenton Treatment. Journal of Hazardous Materials, 162, 230–236.