Toz Metalurjisi ile Üretilen Gözenekli TiZr Alaşımının Mekanik Özellikleri ve Biyouyumluluğu Üzerine Sinterleme Sıcaklığının Etkileri

Dünya nüfusunun ortalama yaşam süresi arttıkça implant biyomalzemelerine olan ihtiyaç da artmaktadır. Bu nedenle, bu alandaki araştırmalar son yıllarda artış göstermiştir. Özellikle, gözenekli metaller, ayarlanabilir mekanik ve fiziksel özellikleri ve gözenekli yapısından dolayı implant kemik etkileşimini arttırmasından dolayı daha kullanışlıdır.Bir yenilik olarak, bu çalışmada, sinterleme sıcaklığının Ti-20Zr alaşımlarının mikroyapısı, mekanik ve biyouyumluluk özellikleri üzerindeki etkileri araştırılmıştır.Numunelerin mikroyapılarında meydana gelen değişimler ve faz analizi, taramalı elektron mikroskobu (SEM) ve X-ışını kırınımı (XRD) ile araştırılmıştır.Basma testi kullanılarak numunelerin mekanik özellikleri ve Sprague Dawley dişi ratlar kullanılarak in vivo biyouyumluluk özellikleri incelenmiştir. Deneysel sonuçlara göre, sinterleme sıcaklığı mikroyapı, mekanik özellikler ve biyouyumluluk üzerinde önemli bir rol oynamıştır. Ayrıca implantasyon bölgesinde herhangi bir toksik veya alerjik reaksiyon görülmemiştir. Bu sonuçlar Ti-20Zr alaşımlarının sert doku için umut verici bir implant olduğunu ortaya çıkarmıştır.

Effects of Sintering Temperature on Mechanical Properties and Biocompatibility of Porous TiZr Alloy Produced by Powder Metallurgy

As the average life expectancy of the world population increases, the need for implant biomaterials increases. Therefore, research in this area has increased in recent years. In particular, porous metals are more useful due to their controllable mechanical and physical properties and improved implant-bone interaction due to their porous structure. As an innovation, in this study, the effects of sintering temperature on the microstructure, mechanical and biocompatibility properties of Ti-20Zr alloys were investigated. Changes in the microstructure of the samples and phase analysis were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the samples were investigated by using the compression test and the in vivo biocompatibility properties were investigated by using Sprague Dawley female rats. According to the experimental results, the sintering temperature played an important role in the microstructure, mechanical properties, and biocompatibility. In addition, no toxic or allergic reactions were observed at the implantation site. These resultsrevealed that Ti-20Zr alloys are promising implants for hard tissue. 

___

  • Verma, R. P. (2020). Titanium based biomaterial for bone implants: A mini review. Material Today: Proceeding, 26, 3148–3151.
  • Sista, S., Wen, C., Hodgson, P. D. & Pande, G. (2011). The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro. Journal of Biomedical Materials Research A, 97, 27-36.
  • Wen, C. E., Yamada, Y., & Hodgson P.D., (2006). Fabrication of novel TiZr alloy foams for biomedical applications. Materials Science and Engineering C, 26, 1439 – 1444.
  • Dercz, I. M. G. & Barczyk, J. (2020). Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications. Materials Science and Technology, 36, 972-977.
  • Correa, D.R.N., Rocha, L.A., Donato, T.A.G., Sousa, K.S.J., Grandini, C.R., Afonso, H. Doi, C.R.M., Tsutsumi, Y. & Hanawa, T. (2020). On the mechanical biocompatibility of Ti-15Zr-based alloys for potential use as load-bearing implants. Journal Materials Research and Technology, 9, 1241–1250.
  • Mareci, D., Sutiman, D., Chelariu, R., Leon, F. & Curteanu, S. (2013). Evaluation of the corrosion resistance of new ZrTi alloys by experiment and simulation with an adaptive instance-based regression model. Corrossion Science, 73, 106–122.
  • Bolat, G., Izquierdo, J., Mareci, D., Sutimana, D. & Souto, R. M. (2013). Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 106, 432– 439.
  • Saulacic, N., Bosshardt, D.D., Bornstein, M.M., Berner S. & Buser, D. (2012). Bone Apposition to A Titanium-Zirconium Alloy Implant, As Compared to Two Other Titanium-Containing Implants. European Cells & Materials, 23, 273-288.
  • Grandin, H. M., Berner, S. & Dard, M. (2012). A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants. Materials, 5, 1348-1360.
  • Saldaña, L., Méndez-Vilas, A., & Jiang, L. (2007). In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials, 28, 4343–4354.
  • Kulakov, O. B., Doktorov, A. A., & D’iakova, S. V., (2005). Experimental study of osseointegration of zirconium and titanium dental implants. Morfologiia, 127, 52–55.
  • Matuła, I., Dercz, G., Barczyk, J. (2020). Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications. Materials Science and Technology, 36, 972-977.
  • Çakmak, Ö., & Kaya, M. (2021). Effect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy. Applied Physics A, 127(561), 1-8.
  • Yılmaz, E., Gökçe, A., Fındık, F., & Gülsoy, H.O. (2018). Powder metallurgy processing of Ti–Nb based biomedical alloys. Acta Physica Polonica A, 134, 278–280.
  • Arabnejad, S., Johnston, R. B., Pura, J. A., Singh, B., Tanzer, M. & Pasini, D. (2016). High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomaterial, 30, 345-356.
  • Levine, B. (2008). A new era in porous metals: applications in orthopedics. Advanced Engineering Materials, 10, 788–792.
  • Kaya, M., Yakuphanoğlu, F., Elibol, E. & Köm, M. (2019). Microstructure characterization and biocompatibility behaviour of TiNbZr alloy fabricated by powder metallurgy. Material Research Express, 6, 1-12.
  • Wu, S., Liu, X., Yeung, K.W.K., Liu, C. & Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering R: Reports, 80, 1–36.
  • [Akkuş, A. (2017). Investigation of Biocompatibility Property and Production of Tizr Alloys by Powder Metallurgy. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği ABD, Adıyaman Üniversitesi.
  • Li, Y., Cui, Y., Zhang, F., & Xu, H. (2011). Shape memory behavior in Ti–Zr alloys. Scripta Materialia, 64, 584–587.
  • Wang, B., Ruan, W., Liu, J., Zhang, T., Yang, H. & Ruan, J. (2019). Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application. Journal of Biomaterial Application, 33, 1-10.
  • Kaya, M. & Yakuphanoğlu, F. (2019). A study on microstructure of porous TiNbZr alloy produced as biomaterial. Materialwissenschaft und Werkstofftechnik, 50, 742–746.
  • Thoma, D. S., Jones, A. A., Dard, M., Grize, L., Obrecht, M. & Cochran, D. L. (2011). Tissue Integration of a New Titanium– Zirconium Dental Implant: A Comparative Histologic and Radiographic Study in the Canine. Journal of Periodontology, 82, 1453-146.
  • Shibata, N. & Okuno, O. (1987). Bone and Fibrous Tissue Ingrowth into the Porous Zr-Ti Implants. Dental Materials Journal, 6, 185-200.
  • Mour, M., Das, D., Winkler, T., Hoenig, E., Mielke, G., Morlock, M.M. & Schilling, A. F. (2010). Advances in Porous Biomaterials for Dental and Orthopedic Applications. Materials, 3, 2947-2974.