Çift Eksen Güneş Takip Sistemi Geliştirilmesi

Yenilenebilir enerji kaynakların efektif kullanımı günümüzde çok önemlidir. Çünkü enerji kaynakları sınırlıdır ve yenilenebilir enerjiden maksimum düzeyde istifade etmek gereklidir. Bu çalışmada güneş enerjisinden olabilecek maksimum enerjiyi elde etmek için fotovoltaik sistemde çift eksenli güneş takip sistemi uygulaması gerçekleştirilmiştir. Güneş takip sisteminde mekanik düzende dikey tutucu olarak kestamit malzemesi, güneş paneli tutucu ise demir kullanılmıştır. Güneş panelinin 4 köşesinde toplam 4 adet LDR kullanılarak Arduino tabanlı dikey ve yatay eksende güneş takibi gerçekleştirilmiştir. Sistemde kullanılan güneş paneli gücü 45W olup, yatay eksende redüktörlü DC motor, dikey eksende lineer DC motor kullanılmıştır. Gerçekleştirilen uygulama sonucunda hassas güneş takibi yapan bir sistem gerçekleştirilmiş ve statik bir PV sisteme göre daha yüksek verim elde edilmiştir.

Realization of a Dual Axis Solar Tracking System

The effective use of renewable energy sources is very important today. Energy resources are limited and it is necessary to make maximum use of renewable energy. In this study, a dual-axis solar tracking system was implemented in the photovoltaic system in order to obtain the maximum possible energy from solar energy. In the solar tracking system, chestnut material is used as the vertical holder in the mechanical arrangement, and iron is used as the solar panel holder. By using a total of 4 LDRs at 4 corners of the solar panel, Arduino-based solar tracking on vertical and horizontal axis was carried out. The solar panel power used in the system is 45W, a geared DC motor on the horizontal axis and a linear DC motor on the vertical axis. As a result of the implemented application, a system that performs sensitive sun tracking has been realized and higher efficiency has been obtained compared to a static PV system.

___

  • Başoğlu, M. E., Kazdaloğlu, A., Erfidan, T., Bilgin, M. Z. & Çakır, B., (2015). Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions. Renewable and Sustainable Energy Reviews, 52, 357-365.
  • Ekolojist.com. (2022). Yenilenebilir Enerji Kaynakları. https://www.ekolojist.com/enerji/yenilenebilirenerji-kaynaklari/ (Access date: 29.08.2021).
  • Racharla S. & Rajan, K. (2017). Solar tracking system - a review. International Journal of Sustainable Engineering, 10(2), 72-81.
  • Muhammed, J. Y., Jimoh, M. T., Kyari, I. B., Gele, M. A. & Musa I. (2019). A review on solar tracking system: A technique of solar power output enhancement. Engineering Science, 4(1), 1-11.
  • Amelia, A. R., Irwan, Y. M., Safwati, I., Leow, W. Z., Mat, M. H. & Rahim, M. S. A., (2019). Technologies of solar tracking systems: A review.IOP Conf. Series: Materials Science and Engineering, 767, 012052.
  • Awasthi, A., Shukla, A. K., Manohar, M., Dondariya, C., Shukla, K. N., Porwal, D. & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392-405.
  • Lee, J. F., Rahim, N. A. & Al-Turki, Y. A. (2013). Performance of dual-axis solar tracker versus static solar system by segmented clearness index in Malaysia. International Journal of Photoenergy, 1-14.
  • Bazyari, S., Keypour, R., Farhangi, S., Ghaedi, A. & Bazyari, K. (2014). A study on the effects of solar tracking systems on the performance of photovoltaic power plants. Journal of Power and Energy Engineering, 2, 718-728.
  • Parasnis, N. V. & Tadamalle, A. P. (2016). Automatic solar tracking systems. International Journal of Innovations in Engineering Research and Technology, 3(1), 1-10.
  • Er, Z. & Balcı, E. (2018). Dual axis solar angle tracking system without any sensor. Journal of Energy Systems, 2(3), 127-136.
  • Chowdhury, M. E. H., Khandakar, A., Hossain, B. & Abouhasera, R. (2019). A low-cost closed-loop solar tracking system based on the sun position algorithm. Journal of Sensors, 1-11.
  • Al-Jumaili, M. H., Haglan, H. M., Mohammed, M. K. & Eesee, Q. H. (2020). An automatic multi-axis solar tracking system in Ramadi city: design and implementation. Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1126-1234.
  • Erdoğan Y., Dinçler T., Kuncan M., & Ertunç H. M. (2014).Güneş panelleri için yüksek verimli maksimum güç noktası izleyicisi (MPPT) tasarımı. Türk Otomatik Kontrol Toplantısı, TOK, Kocaeli-Türkiye, 1055-1060.
  • Bulut N., Kuncan M., & Horoz S. (2018). Türkiye’de güneş enerjisinin kullanım alanları ve Siirt güneş enerji potansiyeli. Ahtamara 1st International Multidisciplinary Studies Congress, Gevaş, Van-Türkiye.
  • Teknik Solar. (2022). Off Grid Akülü Sistem (Off Grid). https://www.tekniksolar.com/off-grid-akulu-sistem/ (Access date: 31.08.2021).
  • Semiz, T.Y. Robotistan. (2022). LDR Nedir? Foto Dirençlerin Çalışma Mantığı. https://maker.robotistan.com/LDR/ (Access date: 31.08.2021).
  • Ekonomik Solar. (2022). Şarj Regülatörü veya control cihazı nedir, nerelerde kullanılır. https://www.ekonomiksolar.com/index.php/index.php?route=journal2/blog/post&journal_blog_post_id=3 (Access date: 31.08.2021).
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ