TiO2 Katkılı Çevre Dostu Dielektrik Sıvının Elektro Erozyon Delik Delme Performanslarının Araştırılması

Bu çalışmada işparçası olarak AISI4140 çeliği, elektrot olarak 2 mm dış çapa sahip ortası tek delik bakır tüp, dielektrik sıvı olarak ise yüksek parlama noktasına ve düşük viskoziteye sahip Eurolub EDM ER100 çevreci tip elektro erozyon sıvısı kullanılmıştır. ER100 içerisine farklı derişim oranlarında (katkısız, 5 g/l ve 10 g/l) katılan TiO2 tozunun hassas (M1), orta (M2) ve kaba (M3) işleme koşullarında elektro erozyon ile işleme (EEİ) çıktı performansları (işparçası işleme hızı (İİH), elektrot aşınma hızı (EAH), bağıl aşınma (BA) ve ortalama yüzey pürüzlülüğü (Ra)) üzerine etkileri araştırılmıştır. Dielektrik sıvıya 5 g/l TiO2 tozu katkısı sayesinde her üç işleme tipinde İİH değeri açısından ortalama %30,48’lik bir artış elde edilmiştir. Yine, dielektrik sıvıya 10 g/l TiO2 tozu katkısıyla her üç işleme tipinde ortalama %57,03’lük bir işleme hızı artışı sağlanmıştır. Elektrotu döndürmek İİH değerleri üzerinde M1 işleme tipinde ortalama %99,5 artış sağlarken, M2 işleme tipinde ortalama %13,75 ve M3 işleme tipinde ortalama %9,38 oranlarında artışlara olanak sağlamıştır. TiO2 tozu katkısıyla hem sabit hem de döner elektrotla yapılan deneylerde, M1 ve M2 işleme tiplerinde elektrot aşınması azalırken sadece M3 işleme tipinde litreye 10 gram TiO2 tozu katkılı dielektrikte elektrot aşınmasının arttığı sonucuna varılmıştır. BA değerlerinin tıpkı EAH değerleri gibi özellikler sergilediği tespit edilmiştir. Dielektrik sıvıya 5 g/l TiO2 tozu katkısı Ra değerlerini M1 için %5,27, M2 için %8 ve M3 için %2,95 oranlarında azaltmıştır. Yine, 10 g/l TiO2 tozu katkısı Ra değerlerini M1 için %8,15, M2 için %15,07 ve M3 için %6,21 oranlarında azalttığı tespit edilmiştir.

Investigation of Electrical Discharge Drilling Performances of TiO2 Mixed Eco-friendly Dielectric Liquid

In this study, AISI4140 steel was used as a workpiece, a single hole copper tube with an outer diameter of 2 mm as the electrode, and Eurolub EDM ER100 environmentally friendly type erosion fluid with a high flash point and low viscosity as a dielectric liquid. The effects of TiO2 powder, which was added to ER100 at different concentration rates (no added, 5 g/l and 10 g/l), on electrical discharge machining (EDM) output performances (workpiece removal rate (WRR), electrode wear rate (EWR), relative wear (RW) and average surface roughness (Ra)) under sensitive (M1), medium (M2) and rough (M3) machining conditions were investigated. By the agency of 5 g/l TiO2 powder addition into the dielectric liquid, an average increase of 30.48% was achieved in terms of WRR in all three machining types. Again, with a 10 g/l TiO2 powder addition into the dielectric liquid, an average machining rate increase of 57.03% was achieved for all three machining types. Rotating the electrode had provided an average of 99.5% increase for M1 machining type on WRR values, while an average of 13.75% increase in M2 machining type and an average of 9.38% increase in M3 machining type. In experiments with both fixed and rotary electrodes with TiO2 powder addition, it has been concluded that electrode wear decreases for M1 and M2 machining types while only for M3 machining type with 10 gram TiO2 powder added dielectric, electrode wear increases. It was determined that RW values exhibit features just like EWR values. The 5 g/l TiO2 powder addition into the dielectric fluid had reduced Ra values by 5.27% for M1, 8% for M2 and 2.95% for M3. Also, 10 g/l TiO2 powder addition was found to reduce Ra values by 8.15% for M1, 15.07% for M2 and 6.21% for M3.

___

  • [1] Jadhav, H. P., Mohanty, P. K., & Das, S. (2018). Numerical simulation of multi-spark electric discharge machining analysis for Ti6Al4V alloy drilling. Materials Today: Proceedings, 5, 28337–28346.
  • [2] Marashi, H., Jafarlou, D. M., Sarhan, A. A. D., & Hamdi, M. (2016). State of the art in powder mixed dielectric for EDM applications. Precision Engineering, 46, 11-13.
  • [3] Rajamanickam, S., & Prasanna, J. (2018). TOPSIS on High Aspect Ratio Electric Discharge Machining (EDM) of Ti-6Al-4V using 300 μm brass rotary tube electrodes. Materials Today: Proceedings, 5, 18489-18501.
  • [4] Cyril, J., Paravasu, A., Jerald, J., Sumit, K., & Kanagaraj, G. (2017). Experimental investigation on performance of additive mixed dielectric during micro-electric discharge drilling on 316L stainless steel. Materials and Manufacturing Processes, 32(6), 638-644.
  • [5] Kumar, A., Mandal, A., Dixit, A. R., Das, A. K., Kumar, S., & Ranjan, R. (2019). Comparison in the performance of EDM and NPMEDM using Al2O3 nanopowder as an impurity in DI water dielectric. The International Journal of Advanced Manufacturing Technology, 100, 1327-1339.
  • [6] Kliuev, M., Maradia, U., Boccadoro, M., Perez, R., Stirnimann, J., & Wegener, K. (2016). Experimental Study of EDM-Drilling and Shaping of SiSiC and SiC. Procedia CIRP, 42, 191-196.
  • [7] Kliuev, M., Maradia, U., & Wegener, K. (2018). EDM Drilling of Non-Conducting Materials in Deionised Water. Procedia CIRP, 68, 11-16.
  • [8] Munz, M., Risto, M., Haas, R., Landfried, R., Kern, F., & Gadow, R. (2013). Machinability of ZTA-TiC ceramics by electrical discharge drilling. Procedia CIRP, 6, 77-82.
  • [9] Kumar, R., Kumar, A., & Singh, I. (2018). Electric discharge drilling of micro holes in CFRP laminates. Journal of Materials Processing Tech., 259, 150-158.
  • [10] Unses, E., & Cogun, C. (2015). Improvement of Electric Discharge Machining (EDM) Performance of Ti-6Al-4V Alloy with Added Graphite Powder to Dielectric. Strojniški vestnik-Journal of Mechanical Engineering, 61(6), 409-418.
  • [11] Kumar, R., & Singh, I. (2019). A modified electrode design for improving process performance of electric discharge drilling. Journal of Materials Processing Tech., 264, 211-219.
  • [12] Rahman, S. S., Ashraf, M. Z. I., Bashar, M. S., Kamruzzaman, M., Amin, A. K. M. N., & Hossain, M. M. (2017). Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti-6Al-4V ELI by wire-EDM to enhance biocompatibility. Int. J. Adv. Manuf. Technol., 93, 3285-3296.
  • [13] Rakwal, D., Heamawatanachai, S., Tathireddy, P., Solzbacher, F., & Bamberg, E. (2009). Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsyst Technol., 15(5), 789-797.
  • [14] Aliyu, A. A. A., Rani, A. M. A., Ginta, T. L., Rao, T. V. V. L. N., Selvamurugan, N., & Roy, S. (2018). Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO3) on Zr–Cu–Ni–Ti–Be for orthopedic application. Materials and Manufacturing Processes, 33(16), 1734-1744.
  • [15] Kumar, R., & Singh, I. (2018). Productivity improvement of micro EDM process by improvised tool. Precision Engineering, 51, 529-535.
  • [16] Pragadish, N., & Kumar, M. P. (2015). Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design. Journal of Mechanical Science and Technology, 29(4), 1737-1743.
  • [17] Govindan, P., & Joshi, S. S. (2010). Experimental characterization of material removal in dry electrical discharge drilling. International Journal of Machine Tools & Manufacture, 50, 431-443.
  • [18] Dhakar, K., & Dvivedi, A. (2017). Experimental Investigation on Near-dry EDM using Glycerin-Air Mixture as Dielectric Medium. Materials Today: Proceedings, 4, 5344-5350.
  • [19] Dhakar, K., & Dvivedi, A. (2016). Parametric Evaluation on Near-Dry Electric Discharge Machining. Materials and Manufacturing Processes, 31, 413-421.
  • [20] Bai, X., Yang, T., & Zhang, Q. (2018). Experimental study on the electrical discharge machining with three-phase flow dielectric medium. The International Journal of Advanced Manufacturing Technology, 96, 2003-2011.
  • [21] Hanash, E. A. H., & Ali, M. Y. (2017). Experimental study of electrical discharge drilling of stainless steel UNS S30400. IOP Conf. Series: Materials Science and Engineering, 290, 1-8.
  • [22] Hourmand, M., Sarhan, A. A. D., & Sayuti, M. (2017). Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review. Int. J. Adv. Manuf. Technol., 91, 1023-1056.
  • [23] Nanimina, A. M., Rani, A. M. A., & Ginta, T. L. (2014). Assessment of Powder Mixed EDM: A Review. MATEC Web of Conferences, 13, 4018-4023.
  • [24] Mondal, G., Surekha, B., & Choudhury, S. D. (2018). Investigation on the influence of different Powder mixed Dielectric in Electric discharge Machining. Materials Today: Proceedings, 5, 18281-18286.
  • [25] Wang, C., & Qiang, Z. (2019). Comparison of Micro-EDM Characteristics of Inconel 706 between EDM Oil and an Al Powder-Mixed Dielectric. Advances in Materials Science and Engineering, 1-11.
  • [26] Erdem, O., Çoğun, C., Urtekin, L., Özerkan, H. B., & Uslan, İ. (2016). Toz katkılı ve ısıtılmış dielektriğin elektro erozyon ile işlemede (EEİ) delik delme performansı üzerine etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 31(3), 531-544.
  • [27] Li, C., Xu, X., Li, Y., Tong, H., Ding, S., Kong, Q., Zhao, L., & Ding, J. (2019). Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy. Journal of Alloys and Compounds, 783, 95-102.
  • [28] Shard, A., Shikha, D., Gupta, V., & Garg, M. P. (2018). Efect of B4C abrasive mixed into dielectric fuid on electrical discharge machining. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 554-565.
  • [29] Patel, S., Thesiya, D., & Rajurkar, A. (2017). Aluminium powder mixed rotary electric discharge machining (PMEDM) on Inconel 718. Australian Journal of Mechanical Engineering, 16(1), 21-30.
  • [30] Kuppan, P., Narayanan, S., Oyyaravelu, R., & Balan A. S. S. (2017). Performance Evaluation of Electrode Materials in Electric Discharge Deep Hole Drilling of Inconel 718 Superalloy. Procedia Engineering, 174, 53-59.
  • [31] Beravala, H., & Pandey, P. M. (2018). Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes. Journal of Manufacturing Processes, 34, 356-373.
  • [32] Sahu, S. K., Jadam, T., Datta, S., & Nandi, G. (2018). Effect of using SiC powder-added dielectric media during electrodischarge machining of Inconel 718 superalloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 330-349.
  • [33] Paul, B. K., Sahu, S. K., Jadam, T., Datta, S., Dhupal, D., & Mahapatra, S. S. (2018). Effects of Addition of Copper Powder in the Dielectric Media (EDM Oil) on Electro-Discharge Machining Performance of Inconel 718 Super Alloys. Materials Today: Proceedings, 5, 17618-17626.
  • [34] Tiwary, A. P., Pradhan, B. B., & Bhattacharyya, B. (2018). Investigation on the effect of dielectrics during micro-electro-discharge machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol., 95, 861-874.
  • [35] Baseri, H., & Sadeghian, S. (2016). Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. Int. J. Adv. Manuf. Technol., 83, 519-528.
  • [36] Swiercz, R., & Swiercz, D. O. (2019). The Effects of Reduced Graphene Oxide Flakes in the Dielectric on Electrical Discharge Machining. Nanomaterials, 9, 335-351.
  • [37] Tseng, K. H., Chang, C. Y., Chung, M. Y., & Cheng, T. S. (2017). Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure. Nanotechnology, 28, 465701-465710.
  • [38] Sindhu, M. K., Nandi, D., & Basak, I. (2018). Electric discharge phenomenon in dielectric and electrolyte medium. Adv. Manuf., 6, 457-464.
  • [39] Kou, Z., & Han, F. (2018). On sustainable manufacturing titanium alloy by high-speed EDM milling with moving electric arcs while using water-based dielectric. Journal of Cleaner Production, 189, 78-87.
  • [40] Srinivas, V. V., Ramanujam, R., & Rajyalakshmi, G. (2018). A Review of Research Scope on Sustainable and Eco-Friendly Electrical Discharge Machining (E-EDM). Materials Today: Proceedings, 5, 12525-12533.
  • [41] Almancinha, J. A., Lopes, A. M., Rosa, P., & Marafona, J. D. (2018). How Hydrogen Dielectric Strength Forces the Work Voltage in the Electric Discharge Machining. Micromachines, 9, 240-251.
  • [42] Valaki, J. B., & P.P. Rathod, P. P. (2016). Assessment of operational feasibility of waste vegetable oil based bio-dielectric fluid for sustainable electric discharge machining (EDM). Int. J. Adv. Manuf. Technol., 87, 1509-1518.
  • [43] Süzgünol, M., & Kayır, Y. (2012). DIN 1.2311 ve 1.2738 kalıp çeliklerinin işlenebilirliği. 3. Ulusal Talaşlı İmalat Sempozyumu. 04-05 Ekim, Ankara, Türkiye, 132-142.
  • [44] Davis, J. R. (1996). ASM Specialth Handbook Carbon and Alloy Steels. ASM International, New York, 731.
  • [45] Erdem, O. (2016). Elektro erozyon ile işlemede döner elektrot kullanılarak delik delmede dielektrik delik delmede dielektrik sıvısına karıştırılan tozların ve ısıtmanın işleme performansına etkisinin araştırılması ve multi fizik simülasyonu. Doktora tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [46] Nas, E., Argun, K., & Zurnacı, E. (2018). AISI 1.2738 Çeliğinin Elektro-Erozyon Tezgahında Grafit Elektrot ile İşlenmesinde İşleme Parametrelerinin Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6, 574-581.
  • [47] Davis, J. R. (1998). Metals Handbook 2nd Edition. ASM International, New York, 2571.
  • [48] Nas, E. (2020). Optimization of the EDM machinability of deep and shallow cryogenically treated corrosion-resistant superalloys. Proc. IMechE. Part C: J. Mech. Eng. Sci., 0(0), 1-16.
  • [49] Erdem, O. (2018). Nükleer enerji santrallerinde kullanılan östenitik çeliklerin elektro erozyon ile işleme (EEİ) performansları. International Eurasian Conference on Science, Engineering and Technology (EurasianSciEnTech 2018). November 22-23, Ankara, Turkey, 203-211.
  • [50] Tess-San Metal Yüzey İşlem Kimyasalları, 2020. https://www.tess san.com.tr/urun/eurolub-edm-er-100/ (26.03.2020).
  • [51] Merck, 2020. https://www.merckmillipore.com/TR/tr/product/TitaniumIV-oxide,MDA_CHEM-100808 (26.03.2020).
  • [52] Erdem, O., Çoğun, C., Uslan, İ., Urtekin, L., & Özerkan, H. B. (2013). Elektro Erozyon İle İşlemede Döner Elektrot İle Delik Delmede Dielektrik Sıvısına Karıştırılan Tozların Ve Isıtmanın İşleme Performansına Etkisi. Makine İmalat Teknolojileri Kongresi. 06-07 Aralık, Bursa, Türkiye, 1-9.
  • [53] Erdem, O., Çoğun, C., Urtekin, L., Özerkan, H. B., & Uslan, İ. (2014). Toz Katkılı Dielektrikle Elektro Erozyon İşleme Performansı. 7th International Powder Metallurgy Conference & Exhibition. June 24-28, Ankara, Turkey, 1-3.
  • [54] Erdem, O. (2018). Gıda Sanayinde Kullanılan AISI304 ve AISI316 Paslanmaz Çeliklerin Elektro Erozyon ile İşleme (EEİ) Performanslarının Araştırılması. The 6th International Symposium on Innovative Technologies in Engineering and Science (ISITES2018). 09-11 November, Alanya-Antalya, Turkey, 56-65.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ