Null Kuaterniyonik Omurga Eğrisi Boyunca Kanal Yüzeyler

In this study, we give the parameterizations of the canal surfaces through a null quaternionic spine curve by using the pseudo-spheres in R_1^4. Besides, we give formulas for the Gauss and Mean curvatures and some corollaries related to the Cartan curvatures of the null quaternionic curve.

Canal Surfaces Through a Null Quaternionic Spine Curve

In this study, we give the parameterizations of the canal surfaces trough a null quaternionic spine curve by using the pseudo-spheres in ℝ??. We also calculate the Gauss and Mean curvatures and obtain some corollaries related to the Cartan curvatures of the null quaternionic curve.

___

  • Hamilton, W. R. (1844). On quaternions; or on a new system of imagniaries in algebra. Lond. Edinb. Dublin. Philos. Mag. J. Sci., 25 (3), 489-495.
  • Aslan, S & Yaylı, Y. (2016). Canal surfaces with quaternions. Adv. Appl. Cliffor.d Algebras, 26, 31–8.
  • Gök, İ. (2017). Quaternionic approach of canal surfaces constructed by some new ideas. Adv. Appl. Clifford Algebras, 27, 1175-1190.
  • Shoemake, K. (1985). Animating rotation with quaternion curves. Proceedings of the 12th annual conference on computer graphics and interactive techniques (SIG-GRAPH 85), 19, New York, NY, USA, 245-254.
  • Haralick, R. M. (2017). Longitudinal & Scalar Waves: Biquaternion generalized maxwell equations. Computer Science, Graduate Center, 172.
  • Rosenfeld, B. (1997). Geometry of Lie groups. Kluwer Academic Publishers, Netherlands, 397.
  • Dyachkova, M. (2007). On Hopf bundle analogue for semiquaternion algebra. 10th International Conference DGA, Olomouc, Czech Republic, 45-47.
  • Bharathi, K. & Nagaraj, M. (1987). Quaternion valued function of a real variable Serret-Frenet formula. Indian J. Pure Appl. Math., 18, 507-511.
  • Çöken, A. C. & Tuna, A. (2004). On the quaternionic inclined curves in the semi-Euclidean space E42. Appl. Math. Comput., 155, 373–389.
  • Gök, İ., Okuyucu, O. Z., Kahraman, F. & Hacisalihoglu, H. H. (2011). On the quaternionic B2-slant helix in the Euclidean space E4. Adv. Appl. Clifford Algebras, 21, 707–719.
  • Körpınar, T. & Baş, S. (2016). Characterization of Quaternionic Curves by Inextensible Flows. Prespacetime Journal, 7, 1680-1684.
  • Okuyucu, O. Z. (2013). Characterizations of the quaternionic Mannheim curves in Euclidean space E4. Mathematical Combinatorics, 2, 44-53.
  • Kecilioglu, O. & Ilarslan, K. (2013). Quaternionic Bertrand Curves in Euclidean 4-Space. Bull. Math. Anal. Appl., 5 (3), 27-38.
  • Önder, M. (2020). Quaternionic Salkowski Curves and Quaternionic Similar Curves. Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90 (3), 447-456.
  • Shoemake, K . (1985). Animating rotation with quaternion curves. Proceedings of the 12th annual conference on computer graphics and interactive techniques (SIG-GRAPH 85), 19, New York, NY, USA, 245-254 .
  • Duggal, K. L. & Bejancu, A. (1996), Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic Publisher, Dordrecht / Boston / London, 303.
  • Ferrandez A., Gimenez A. & Lucas P. (2001). Null Helices in Lorentzian Space Forms. Int. J. Mod. Phys. A, 16 (30), 4845-4863.
  • Çoken, A. C. & Ciftci, U. (2005). On the Cartan curvatures of a null curve in Minkowski spacetime. Geom. Dedicata, 114, 71-78.
  • Kahraman, T. (2019). Null Quaternionic Slant Helices in Minkowski Spaces. International J.Math. Combin., 1, 45-52.
  • Aksoy, A. T. (2016). Pseudo-Spherical Null Quaternionic Curves in Minkowski Space R^4. Acta Physica Polonica A, 130, 259-261.
  • Özel, Ş., Külahçı, M. A. & Bektaş, M. (2021). The Characterizations Of Null Quaternionic Curves In Minkowski 3-Space. Turkish Journal of Science and Technology, 16 (2), 261-267.
  • Aksoy, A. T. & Çöken, A. C. (2015). Null Quaternionic Curves in Semi-Euclidean 3-Space of Index ν. Acta Physica Polonica A, 128, B-286-B-289.
  • Maekawa, T., Patrikalakis, M. N., Sakkalis, T. & Yu, G. (1998). Analysis and applications of pipe surfaces. Comput. Aided Geom. Des., 15, 437–58 .
  • Shani, U. & Ballard, D. H. (1984). Splines as embeddings for generalized cylinders. Computer Vision , Graphics and Image Processing, 27, 129-156.
  • Wang, L., Ming, C. L. & Blackmore, D. (1995). Generating sweep solids for NC verification using the SEDE method. Proceedings of the Fourth Symposium on Solid Modeling and Applications, Atlanta, 364-375.
  • Farouki, R. T. & Sverrissor, R. (1996). Approximation of rolling-ball blends for free-form parametric surfaces. Computer-Aided Design, 28, 871-878.
  • Xu, Z., Feng, R. & Sun, JG. (2006). Analytic and algebraic properties of canal surfaces. Journal of Computational and Applied Mathematics, 195 (1-2), 220-228.
  • Jinhua Qian, J., Tian, X., Fu, X. & Kim, Y. H. (2020). Classifications of Canal Surfaces with the Gauss Maps in Minkowski 3-Space. Mathematics, 8, 1453.
  • Gray, A., Abbana, E. & Salamon, S. (2006). Modern Differential Geometry of Curves and Surfaces with Mathematica (3rd edition), Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, FL, 1016.
  • Ates, F. (2021). Tubular Surfaces Around a Null Curve and Its Spherical Images, FUJMA, 4 (3), 210-220.