Düzenli Depolama Alanlarından Sızıntı Suyunun Mikrodalga Işınlama ile Arıtılmasına Genel Bakış

Artan kentleşme, yaşam standartlarının yükselmesi ve nüfus artışı, katı atık üretimini yükseltmektedir. Katı atıkların kaynağında etkin bir şekilde ayrıştırılması, organik atıkların düşük maliyet ve işletme kolaylığı ile düzenli depolama alanlarında bertaraf edilmesini cazip kılmaktadır. Ancak, düzenli depolama sahalarından kaynaklanan karmaşık yapılara ve yüksek konsantrasyonda kirleticilere sahip olan sızıntı suları, çevresel bir sorun teşkil etmektedir. Sızıntı suyu biyolojik ve fiziksel/kimyasal yöntemlerle arıtılabilir. Arıtma hedeflerine bağlı olarak, düzenli depolama sahalarında genellikle birleşik sistemler uygulanır. Mikrodalga (MD) radyasyon teknolojisi, hızlı ve seçici ısıtma kapasitesi, gelişmiş organik karbon mineralizasyonu/ayrışması/çözünürlüğü ve amonyak-azotu buharlaşması nedeniyle atıksu ve sızıntı suyunun arıtılmasında son yıllarda yaygın olarak çalışılmaktadır. Sıcaklık yükselme hızı, hedef sıcaklık, uygulama süresi, MW gücü çöp sızıntı suyunun ayrışmasını etkiler. Çalışmalar, MW radyasyonunun diğer yöntemlerle kombinasyonunun, sızıntı suyundaki organik maddenin ayrışmasını arttırdığını göstermiştir. İleri Oksidasyon Süreçlerinde (İOPs) güçlü serbest radikal oluşumu, sızıntı suyundaki organik maddelerin etkin ve güçlü bir şekilde çözünmesini sağlamaktadır. Hibrit MD-PS (persülfat)süreci, sızıntı suyu hacmi ve kirletici uzaklaştırma oranı dikkate alındığında, depolama sahası sızıntı suyunun arıtılması için uygulanabilir bir yöntem olarak görülmektedir. Bu derleme çalışmasında, düzenli depolama sahasında oluşan sızıntı suyunun arıtımında uygulanan MD süreci güç tüketimi, verimlilik ve işletme maliyeti açısından incelenmiştir. Ayrıca sızıntı suyu arıtımında daha etkin ve verimli kombine MD/İOS süreçleri değerlendirilmiştir.

Increasing urbanization, rising living standards, and population growth are increasing the rate of solid waste production. An effectively source separation of solid wastes makes attractive to dispose of organic wastes in a landfill area with a low cost and ease of operation. However, the leachates, which have complex structures and high concentration of pollutants, originating from landfill sites poses an environmental problem. The leachate could be treated by biological and physical/chemical methods. Depending on the treatment goals, integrated systems are often applied in the sanitary landfill sites. Microwave (MW) radiation technology is widely studied in the treatment of wastewater and leachate in recent years due to its rapid and selective heating capacity, enhanced organic carbon mineralization/decomposition/solubility and ammonia-nitrogen evaporation. The rate of temperature rise, target temperature, application time, and power of MW affects the decomposition of landfill leachate. Studies indicated that the combination of MW radiation with other methods enhanced the decomposition of organic matter in the leachate. Formation of strong free radical in the Advanced Oxidation Processes (AOPs) process ensures effective and powerful dissolution of organic substances in the leachate. The hybrid MW-PS (persulphate) process is seen as an applicable method for the treatment of landfill leachate, considering the leachate volume and pollutant removal rate. In this review study, the MW process applied in the treatment of leachate generated in the landfill area was examined in terms of power consumption, efficiency, and operating cost. In addition, more effective and efficient combined MW/AOPs processes in the leachate treatment were also evaluated.

___

  • Chen, W., Wang, F., He, C., &Li, Q. (2020). Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate. Journal of Hazardous Materials, 397, 122785.
  • Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications.
  • Chen, G., Wu, G., Li, N., Lu, X., Zhao, J., He, M., &Wang, S. (2021). Landfill leachate treatment by persulphate related advanced oxidation technologies. Journal of Hazardous Materials, 132655.
  • Gu, Z., Chen, W., Li, Q., Wang, Y., Wu, C., & Zhang, A. (2018). Degradation of recalcitrant organics in landfill concentrated leachate by a microwave-activated peroxydisulfate process. RSC advances, 8(57), 32461-32469.
  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468-493.
  • Mojiri, A., Aziz, H. A., Zaman, N. Q., Aziz, S. Q., & Zahed, M. A. (2016). Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalination and Water Treatment, 57(6), 2819-2833.
  • Mojiri, A., Ziyang, L., Hui, W., Ahmad, Z., Tajuddin, R. M., Amr, S. S. A., & Farraji, H. (2017). Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Safety and Environmental Protection, 111, 253-262.
  • Jayanthi, M., Duraisamy, P., Sharma, K. K., & Paramasivam, K. (2012). Potential impacts of leachate generation from urban dumps on the water quality of Pallikaranai Marsh-the only surviving freshwater wetland of Chennai city in India. Indian Journal of Innovations and Developments, 1(3), 186-192.
  • Karak, T., Bhagat, R. M., &Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: the world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509-1630.
  • Ramaiah, B. J., Ramana, G. V., & Datta, M. (2017). Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Management, 68, 275-291.
  • Sharholy, M., Ahmad, K., Mahmood, G., &Trivedi, R. C. (2008). Municipal solid waste management in Indian cities–A review. Waste management, 28(2), 459-467.
  • Han, Z., Ma, H., Shi, G., He, L., Wei, L., & Shi, Q. (2016). A review of groundwater contamination near municipal solid waste landfill sites in China. Science of the Total Environment, 569, 1255-1264.
  • TÜİK, Türkiye İstatistik Kurumu. (2021). İstatistik Veri Portalı, https://data.tuik.gov.tr/Kategori/GetKategori?p=Cevre-ve-Enerji-103.
  • Çelebi, M., Dökmetaş, B., Sönmez, B., &Akçam, N. (2017). Belediye Atıklarından Çöp Gazı (LandFill Gas-LFG) Elde Edilerek Elektrik Enerjisi Üretilmesi ve Ülkemizdeki Örneklerinin İncelenmesi. 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES 2017). 29-30 September, s. 695-701, Baku-Azerbaijan.
  • Sivas Belediyesi. (2019). Çevre Koruma ve Kontrol ve Müdürlüğü Sunumu, 35s.
  • Çanakkale Valiliği. (2021). http://www.canakkale.gov.tr/cop-deponi-alani-enerji-uretim-tesisinin-acilisi-gerceklestirildi
  • Mihai, F. C., & Taherzadeh, M. J. (2017). Introductory chapter: Rural waste management issues at global level. Solid Waste Management in Rural Areas. InTech: Rijeka, Croatia, 1-10.
  • Ayub, S., &Khan, A. H. (2011). Landfill practice in India: A review. Journal of Chemical and Pharmaceutical Research, 3(4), 270-279.
  • Zacarias-Farah, A., & Geyer-Allély, E. (2003). Household consumption patterns in OECD countries: trends and figures. Journal of Cleaner Production, 8(11), 819-827.
  • Lee, P., Sims, E., Bertham, O., Symington, H., Bell, N., Pfaltzgraff, L. & O'Brien, M. (2017). Towards a circular economy: waste management in the EU.Report, Brussels.
  • Mourelatou, European Environment Agency. (2018). A.Mourelatou, European Environment Agency Environmental indicator report 2018: In support to the monitoring of the Seventh Environment Action Programme Publications Office of the European Union, Luxembourg (2018)
  • Modak, P. (2010). Municipal Solid Waste Management: Turning waste into resources. Shanghai Manual-A Guide for Sustainable Urban Development in the 21st Century
  • Liu, Z. H., Tao, C. Y., Liu, R. L., Sun, D. G., & Zou, Z. H. (2007). Study on Treatment of Landfill Leachate Aided by Microwave Fenton Process [J]. Piezoelectrics & Acoustooptics, 3.
  • Sun, W., Wang, X., Decarolis, J. F., & Barlaz, M. A. (2019). Evaluation of optimal model parameters for prediction of methane generation from selected US landfills. Waste Management, 91, 120-127.
  • Ouda, O. K., Raza, S. A., Nizami, A. S., Rehan, M., Al-Waked, R., & Korres, N. E. (2016). Waste to energy potential: a case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328-340.
  • Eurostat. (2015). Eurostat: the statistical office of the European Union situated in Luxembourg.
  • Brennan, R. B., Healy, M. G., Morrison, L., Hynes, S., Norton, D., &Clifford, E. (2016). Management of landfill leachate: The legacy of European Union Directives. Waste management, 55, 355-363.
  • Eur – lex. europe.eu. (1999).Council Directive 1999/31/EC of 26th April 1999 on the landfill of waste (online) available from http://eur-lex.europa.eu/ (Accessed 02/02/2014).
  • EEA. (2013). European Environment Agency. Towards a green economy in Europe. EU environmental policy targets and objectives 2010–2050. file:///C:/Users/ 0109448s/Downloads/Towards%20a%20green%20economy%20in%20Europe%20 (1).pdf (accessed 15 May 2015).
  • EPA. (2000). Landfill Manuals Landfill Site Design. Wexford, Ireland, 154.
  • TÜİK, Türkiye İstatistik Kurumu. (2021). Atık İstatistikleri, 2020.https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198
  • Sharma, K. D., & Jain, S. (2019). Overview of municipal solid waste generation, composition, and management in India. Journal of Environmental Engineering, 145(3), 04018143.
  • Kumar, S., Smith, S. R., Fowler, G., Velis, C., Kumar, S. J., Arya, S., & Cheeseman, C. (2017). Challenges and opportunities associated with waste management in India. Royal Society open science, 4(3), 160764.
  • Ding, Y., Zhao, J., Liu, J. W., Zhou, J., Cheng, L., Zhao, J., & Hu, Z. T. (2021). A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production, 126144.
  • Lee, S. H. (2020). South Korea’s Experience with Smart Infrastructure Services: Bus Management System (No. IDB-MG-854).
  • MOE. (2011). Result of actual condition survey on general waste disposal in FY2010. (in Japanese). http://www.env.go.jp/recycle/waste_tech/ippan/index.html.(Accessed 1 February 2017).
  • Pariatamby, A., Tanaka, M., Islam, A., Rasul, G., Manandhar, P., Parveen, J. A., & Ahmed, N. (2014). Municipal solid waste management in Asia and the Pacific Islands. Environmental Science, Springer, Singapore, 201.
  • Themelis, N. J., &Mussche, C. (2013). Municipal solid waste management and waste-to-energy in the United States, China and Japan. In 2nd International Academic Symposium on Enhanced Landfill Mining, Houthalen-Helchteren. October, (pp. 14-16).
  • Alfaia, R. G. D. S. M., Costa, A. M., & Campos, J. C. (2017). Municipal solid waste in Brazil: A review. Waste Management & Research, 35(12), 1195-1209.
  • US EPA. (2015). Report on the 2015 US Environmental Protection Agency (EPA) International Decontamination Research and Development Conference.
  • Gonçalves, A. T. T., Moraes, F. T. F., Marques, G. L., Lima, J. P., & Lima, R. D. S. (2018). Urban solid waste challenges in the BRICS countries: a systematic literature review. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 13.
  • Oudejans, L. (2017). Report on the 2016 US Environmental Protection Agency (USEPA) International Decontamination Research and Development Conference.
  • Abu Dhabi Statistics Centre. (2018). Statistical Yearbook of Abu Dhabi 2018. Retrieved 20 May 2016 from https://www.scad.gov.abudhabi/Release%20Documents/SY B_2018_EN_9Sep.pdf
  • Koda, E., &Żakowicz, S. (1998). Physical and hydraulics properties of the MSW for water balance of the landfill. 3rd International Congress on Environmental Geotechnics. September, 1.
  • Öztürk, İ., Onay, T. T., Çallı, B., Mertoğlu, B.,& Yıldız, Ş. (2010). Sızıntı Suyu Yönetimi İhtisas Komisyonu Taslak Çalişma Raporu, Türkiye.
  • Akgul, D., Aktan, C. K., Yapsakli, K., & Mertoglu, B. (2013). Treatment of landfill leachate using UASB-MBR-SHARON–Anammox configuration. Biodegradation, 24(3), 399-412.
  • Bilgili, M. S., Demir, A., & Özkaya, B. (2006). Quality and quantity of leachate in aerobic pilot-scale landfills. Environmental Management, 38(2), 189.
  • Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53(7), 737-744.
  • Tripathy, B. K., & Kumar, M. (2017). Suitability of microwave and microwave-coupled systems for landfill leachate treatment: An overview. Journal of environmental chemical engineering, 5(6), 6165-6178.
  • Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., & Asakura, H. (2021). Treatment of landfill leachate with different techniques: an overview. Water Reuse, 11(1), 66-96.
  • Qasim S.R. & Chiang W. (1994). Sanitary Landfill Leachate Generation, Control and Treatment 6 th ed. Technomic
  • Filipkowska, U. (2008). Effect of recirculation method on quality of landfill leachate and effectiveness of biogas production. Polish Journal of Environmental Studies, 17(2), 199.
  • Aldrawsha, A. A., İsmail, A., Natarajan, R., & İbrahim, O. (2020). Biogas production from waste in a sanitary landfill reactor. Journal of Thermal Engineering, 6(6), 298-311.
  • Bae, J. H., Cho, K. W., Lee, S. J., Bum, B. S., &Yoon, B. H. (1998). Effects of leachate recycle and anaerobic digester sludge recycle on the methane production from solid wastes. Water Science and Technology, 38(2), 159-168.
  • Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., & Al-Rekabi, W. S. (2009). Review on Landfill leachate treatments. Journal of Applied Sciences Research, 5(5), 534-545.
  • Šan, I., & Onay, T. T. (2001). Impact of various leachate recirculation regimes on municipal solid waste degradation. Journal of Hazardous Materials, 87(1-3), 259-271.
  • Sanphoti, N., Towprayoon, S., Chaiprasert, P., & Nopharatana, A. (2006). The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill. Journal of Environmental Management, 81(1), 27-35.
  • Liu, Y., Sun, W., Du, B., & Liu, J. (2018). Leachate Recircurlation for Enhancing Methane Generation within Field Site in China.Hindawi.Journal of Chemistry, 2018, ID 9056561, 7 pages. https://doi.org/10.1155/2018/9056561.
  • Ozkaya, B., Demir, A., Basturk, A., & Bilgili, M. S. (2004). Investigation of leachate recirculation effects in Istanbul Odayeri Sanitary Landfill. Journal of Environmental Science and Health, Part A, 39(4), 873-883.
  • Paxéus, N. (2000). Organic compounds in municipal landfill leachates. Water Science and Technology, 42(7-8), 323-333.
  • Arunbabu, V., Indu, K. S., &Ramasamy, E. V. (2017). Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Management, 68, 329-336.
  • Budi, S., Suliasih, B. A., Othman, M. S., Heng, L. Y., & Surif, S. (2016). Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Management, 55, 231-237.
  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical reviews in environmental science and technology, 32(4), 297-336.
  • Moody, C. M., & Townsend, T. G. (2017). A comparison of landfill leachates based on waste composition. Waste Management, 63, 267-274.
  • Boonyaroj, V., Chiemchaisri, C., Chiemchaisri, W., & Yamamoto, K. (2017). Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge. Journal of hazardous materials, 323, 311-318.
  • Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of hazardous materials, 171(1-3), 54-60.
  • Luo, H., Zeng, Y., Cheng, Y., He, D., &Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of the Total Environment, 703, 135468.
  • Fernandez, Y., Maranon, E., Castrillón, L., & Vázquez, I. (2005). Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange. Journal of Hazardous Materials, 126(1-3), 169-175.
  • Torretta, V., Ferronato, N., Katsoyiannis, I. A., Tolkou, A. K., & Airoldi, M. (2017). Novel and conventional technologies for landfill leachates treatment: a review. Sustainability, 9(1), 9.
  • Ahmed, F. N., & Lan, C. Q. (2012). Treatment of landfill leachate using membrane bioreactors: A review. Desalination, 287, 41-54.
  • Assou, M., El Fels, L., El Asli, A., Fakidi, H., Souabi, S., & Hafidi, M. (2016). Landfill leachate treatment by a coagulation–flocculation process: effect of the introduction order of the reagents. Desalination and Water Treatment, 57(46), 21817-21826.
  • Costa, A. M., Alfaia, R. G. D. S. M., & Campos, J. C. (2019). Landfill leachate treatment in Brazil–An overview. Journal of environmental management, 232, 110-116.
  • Deng, Y., & Englehardt, J. D. (2006). Electrochemical oxidation for landfill leachate treatment. Waste management, 27(3), 380-388.
  • Shehzad, A., Bashir, M. J., Sethupathi, S., & Lim, J. W. (2015). An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon. Process safety and environmental protection, 98, 309-318.
  • Naveen, B. P., Sharma, A. K., Sivapullaiah, P. V., Sitharam, T. G., & Narayana, M. A. (2013). Characteristics of the leachate from MSW landfill. In Silver Jubliee Celebrations of Indian Chapter of IGS-Interenational Symposium “Geosynthetics India. 23-25 October.
  • Vahabian, M., Hassanzadeh, Y., & Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environmental monitoring and assessment, 191(2), 109.
  • Abd El-Salam, M. M., & Abu-Zuid, G. I. (2015). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of advanced research, 6(4), 579-586.
  • Kulikowska, D., &Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource technology, 99(13), 5981-5985.
  • Labanowski, J., Pallier, V., & Feuillade-Cathalifaud, G. (2010). Study of organic matter during coagulation and electrocoagulation processes: Application to a stabilized landfill leachate. Journal of Hazardous Materials, 179(1-3), 166-172.
  • Gálvez, A., Ramos, A., Rodríguez, M. L., & Zamorano, M. (2008). Characterization of the leachate produced in the closed cells of a landfill site at Alhendín (Granada, Spain). International Conference on Waste Management and the Environment. May.
  • Heyer, K. U., Stegmann, R., & Für Abfallwirtschaft, I. (2001). Leachate management: leachate generation, collection, treatment and costs. Ingenieurbüro Für Abfallwirtschaft. Online at: http://www. ifashamburg. de/pdf/leachate. pdf.
  • Horikoshi, S., Hidaka, H., &Serpone, N. (2003). Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chemical Physics Letters, 376(3-4), 475-480.
  • Guo, J. S., Abbas, A. A., Chen, Y. P., Liu, Z. P., Fang, F., & Chen, P. (2010). Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Journal of Hazardous Materials, 178(1-3), 699-705.
  • Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1-12.
  • Bhalla, B., Saini, M. S., & Jha, M. K. (2012). Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: a comparative study. International Journal of Engineering Research and Applications, 2(6), 732-745.
  • Shouliang, H. U. O., Beidou, X. I., Haichan, Y. U., Liansheng, H. E., Shilei, F. A. N., & Hongliang, L. I. U. (2008). Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. Journal of Environmental Sciences, 20(4), 492-498.
  • Kang, K. H., Shin, H. S., & Park, H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water research, 36(16), 4023-4032.
  • Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418.
  • Yang, L., Chen, Z., Yang, J., Liu, Y., Wang, J., Yu, Y., & Gao, X. (2014). Removal of volatile fatty acid in landfill leachate by the microwave-hydrothermal method. Desalination and water treatment, 52(22-24), 4423-4429.
  • Ren, X., Liu, D., Chen, W., Jiang, G., Wu, Z., & Song, K. (2018). Investigation of the characteristics of concentrated leachate from six municipal solid waste incineration power plants in China. RSC advances, 8(24), 13159-13166.
  • Kılıç, M. Y., Kestioğlu, K., & Yonar, T. (2007). Landfill leachate treatment by the combination of physicochemical methods with adsorption process. Journal of biological and environmental sciences, 1(1), 37-43.
  • Kamaruddin, M. A., Yusoff, M. S., Aziz, H. A., & Hung, Y. T. (2015). Sustainable treatment of landfill leachate. Applied Water Science, 5(2), 113-126.
  • Hu, X., Wang, X., Ban, Y., & Ren, B. (2011). A comparative study of UV–Fenton, UV–H2O2 and Fenton reaction treatment of landfill leachate. Environmental technology, 32(9), 945-951.
  • Castrillón, L., Fernández-Nava, Y., Ulmanu, M., Anger, I., & Marañón, E. (2010). Physico-chemical and biological treatment of MSW landfill leachate. Waste Management, 30(2), 228-235.
  • Jahan, E., Nessa, A., Hossain, M. F., & Parveen, Z. (2016). Characteristics of municipal landfill leachate and its impact on surrounding agricultural land. Bangladesh Journal of Scientific Research, 29(1), 31-39.
  • Wang, Z., Peng, Y., Miao, L., Cao, T., Zhang, F., Wang, S., & Han, J. (2016). Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresource technology, 214, 514-519.
  • Oumar, D., Patrick, D., Gerardo, B., Rino, D., &Ihsen, B. S. (2016). Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate. Journal of environmental management, 181, 477-483.
  • Xaypanya, P., Takemura, J., Chiemchaisri, C., Seingheng, H., & Tanchuling, M. A. N. (2018). Characterization of landfill leachates and sediments in major cities of Indochina peninsular countries—Heavy metal partitioning in municipal solid waste leachate. Environments, 5(6), 65.
  • Boumechhour, F., Rabah, K., Lamine, C., & Said, B. M. (2013). Treatment of landfill leachate using F enton process and coagulation/flocculation. Water and Environment Journal, 27(1), 114-119.
  • Yadav, J. S., & Dikshit, A. K. (2016). Effect of pretreatment by coagulation on stabilized landfill leachate during anaerobic treatment. Cogent Environmental Science, 2(1), 1209993.
  • Yarimtepe, C. C., & Oz, N. A. (2015). Enhanced biogas production from landfill leachate by low frequency ultrasound. WIT Transactions on the Built Environment, 168, 225-234.
  • Taşcı, S., Özgüven, A., & Yıldız, B. (2021). Multi-Response/Multi-Step Optimization of Heterogeneous Fenton Process with Fe3O4 Catalyst for the Treatment of Landfill Leachate. Water, Air, & Soil Pollution, 232(7), 1-19.
  • Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567-S2574.
  • Córdova, R. N., Nagel-Hassemer, M. E., Matias, W. G., Muller, J. M., & De Castilhos Junior, A. B. (2019). Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process. Environmental technology, 40(6), 793-806.
  • Kurniawan, T. A., Lo, W. H., & Chan, G. Y. (2006). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of hazardous materials, 129(1-3), 80-100.
  • Wang, L., Lin, H., Dong, Y., He, Y. (2018). Effects of cropping patterns of four plants on the phytoremediation of vanadium-containing synthetic wastewater. Ecological Engineering, 115, 27-34.
  • Yong, Z. J., Bashir, M. J., Ng, C. A., Sethupathi, S., Lim, J. W. (2018). A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. Journal of environmental management, 205, 244-252.
  • Fukahori, S., Ichiura, H., Kitaoka, T., Tanaka, H. (2003). Capturing of bisphenol A photodecomposition intermediates by composite TiO2–zeolite sheets. Applied Catalysis B: Environmental, 46(3), 453-462.
  • Genç, N., & Durna, E. (2019). Simultaneous optimization of treatment efficiency and operating cost in leachate concentrate degradation by thermal-activated persulfate catalysed with Ag (I): comparison of microwave and conventional heating. Journal of Microwave Power and Electromagnetic Energy, 53(3), 155-170.
  • Li, C., & Li, X. Z. (2007). Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation. Water Science and Technology, 55(1-2), 217-223.
  • Wei-sheng, D. Z. G. (2012). Treatment of Landfill Leachate via Fenton Oxidation Process Catalyzed by Fe~(2+) Loaded on GAC and Enhanced by Microwave [J]. Journal of South China University of Technology (Natural Science Edition), 8.
  • Amokrane, A., Comel, C., Veron, J. (1997). Landfill leachates pretreatment by coagulation-flocculation. Water research, 31(11), 2775-2782.
  • Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), 4363-4389.
  • Gandhimathi, R., Durai, N. J., Nidheesh, P. V., Ramesh, S. T., & Kanmani, S. (2013). Use of combined coagulation-adsorption process as pretreatment of landfill leachate. Iranian Journal of Environmental Health Science & Engineering, 10(1), 1-7.
  • Diamadopoulos, E. (1994). Characterization and treatment of recirculation-stabilized leachate. Water Research, 28(12), 2439-2445.
  • Chaouki, Z., El Mrabet, I., Khalil, F., Ijjaali, M., Rafqah, S., Anouar, S., & Zaitan, H. (2017). Use of coagulation-flocculation process for the treatment of the landfill leachates of Casablanca city (Morocco). Journal of Materials and Environmental Science, 8(8), 2781-2791.
  • Daud, Z., Abd Aziz, A. L., & Mao, L. (2012). Coagulation-Flocculation in Leachate Treatment by Using Ferric Chloride and Alum as Coagulant. International Journal of Engineering Research and Applications 2(4).
  • Hasar, H., Unsal, S. A., Ipek, U., Karatas, S., Cınar, O., Yaman, C., Kınacı, C. (2009). Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. Journal of Hazardous Materials, 171(1-3), 309-317.
  • Erabee, I. K., Ahsan, A., Jose, B., Aziz, M. M. A., Ng, A. W. M., Idrus, S., Daud, N. N. N. (2018). Adsorptive treatment of landfill leachate using activated carbon modified with three different methods. KSCE Journal of Civil Engineering, 22(4), 1083-1095.
  • Patil, N. N., & Shukla, S. R. (2015). Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. Journal of Water Process Engineering, 7, 314-327
  • Chou, Y. C., Lo, S. L., Kuo, J., & Yeh, C. J. (2013a). A study on microwave oxidation of landfill leachate—contributions of microwave-specific effects. Journal of hazardous materials, 246, 79-86.
  • Costa, C., Santos, V. H. S., Araujo, P. H. H., Sayer, C., Santos, A. F., & Fortuny, M. (2009). Microwave-assisted rapid decomposition of persulfate. European polymer journal, 45(7), 2011-2016.
  • Chou, Y. C., Lo, S. L., Kuo, J., Yeh, C. J. (2013b). Derivative mechanisms of organic acids in microwave oxidation of landfill leachate. Journal of hazardous materials, 254, 293-300.
  • Lidström, P., Tierney, J., Watheyb, B., Westmana, J. (2001). Microwave assisted organic synthesisÐa review. Tetrahedron, 57, 9225-9283.
  • Thostenson, E. T., Chou, T. W. (1999). Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055-1071.
  • Remya, N., & Lin, J. G. (2011). Current status of microwave application in wastewater treatment—a review. Chemical Engineering Journal, 166(3), 797-813.
  • Karthik, P. S., & Singh, S. P. (2015). Conductive silver inks and their applications in printed and flexible electronics. Rsc Advances, 5(95), 77760-77790.
  • Galindo, L. A., Puillandre, N., Strong, E. E., Bouchet, P. (2014). Using microwaves to prepare gastropods for DNA barcoding. Molecular Ecology Resources, 14(4), 700-705.
  • Ku, H. S., Siores, E., Taube, A., Ball, J. A. (2002). Productivity improvement through the use of industrial microwave technologies. Computers & Industrial Engineering, 42(2-4), 281-290.
  • Li, S., Zhang, G., Wang, P., Zheng, H., Zheng, Y. (2016). Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 294, 371-379.
  • Li, L., Jing, C., Zuqun, X., Songhu, Y., Menghua, C., Huangcheng, L., Xiaohua, L. (2009). Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study. Journal of Hazardous Materials, 168.
  • Bi, X., Wang, P., Jiao, C., Cao, H. (2009). Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process. Journal of hazardous materials, 168(2-3), 895-900.
  • Tsai, H. C., & Lo, S. L. (2011). Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method. Journal of hazardous materials, 186(2-3), 1431-1437.
  • Dong, S., & Sartaj, M. (2016a). Statistical analysis and optimization of ammonia removal from landfill leachate by sequential microwave/aeration process using factorial design and response surface methodology. Journal of environmental chemical engineering, 4(1), 100-108.
  • Dong, S., & Sartaj, M. (2016b). Statistical analysis of thermal and nonthermal effects of sequential microwave/aeration process for the removal of ammonia from aqueous solution. Desalination and Water Treatment, 57(42), 20005-20015.
  • Salvi, D., Ortego, J., Arauz, C., Sabliov, C. M., & Boldor, D. (2009). Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating. Journal of food engineering, 93(2), 149-157.
  • Caballero, J. A., Front, R., Marcilla, A., & Conesa, J. A. (1997). Characterization of sewage sludges by primary and secondary pyrolysis. Journal of Analytical and Applied Pyrolysis, 40, 433-450.
  • Menéndez, J. A., Inguanzo, M., & Pis, J. J. (2002). Microwave-induced pyrolysis of sewage sludge. Water research, 36(13), 3261-3264.
  • Coelho, N. M. G., Droste, R. L., & Kennedy, K. J. (2014). Microwave effects on soluble substrate and thermophilic digestibility of activated sludge. Water Environment Research, 86(3), 210-222.
  • Peng, L., Appels, L., & Su, H. (2018). Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge. Journal of environmental management, 213, 271-278.
  • Toreci, I., Kennedy, K. J., & Droste, R. L. (2010). Effect of high-temperature microwave irradiation on municipal thickened waste activated sludge solubilization. Heat Transfer Engineering, 31(9), 766-773.
  • Bougrier, C., Delgenes, J. P., & Carrère, H. (2007). Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochemical Engineering Journal, 34(1), 20-27.
  • Wong, W. T., Chan, W. I., Liao, P. H., & Lo, K. V. (2006). A hydrogen peroxide/microwave advanced oxidation process for sewage sludge treatment. Journal of Environmental Science and Health, Part A, 41(11), 2623-2633.
  • Xu, X. C., Zhang, H. T., Dong, Z. Y., Fan, Y. F. (2013). Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon. Environmental technology, 34(20), 2853-2858.
  • Zhang, L., Guo, X., Yan, F., Su, M., & Li, Y. (2007a). Study of the degradation behaviour of dimethoate under microwave irradiation. Journal of hazardous materials, 149(3), 675-679.
  • Tao, C. Y., Xiang, Y., Liu, R. L., Sun, D. G., & Liu, Z. H. (2006). Comparison experiment of landfill leachate by using microwave and microwave-Fenton reagent [J]. Journal of Liaoning University of Petroleum & Chemical Technology, 4.
  • Ding, Z., Tan, F., Li, Q., & Qiu, J. (2011). Research on Fenton oxidation treatment of landfill leachate by microwave. International Conference on Electric Technology and Civil Engineering (ICETCE). April, pp. 1468-1471.
  • Rabah, F. K., & Darwish, M. S. (2012). Characterization of ammonia removal from municipal wastewater using microwave energy: batch experiment. Environ. Nat. Resour. Res, 3(1), 42-50.
  • Kawala, Z., & Atamańczuk, T. (1998). Microwave-enhanced thermal decontamination of soil. Environmental science & technology, 32(17), 2602-2607.
  • Zhang, W., Yang, S., Niu, R., Shao, X., Shan, L., Yang, X., & Wang, P. (2010). Microwave-assisted COD removal from landfill leachate by hydrogen peroxide, peroxymonosulfate and persulfate. 4th International Conference on Bioinformatics and Biomedical Engineering. June, (pp. 1-4).
  • Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167-176.
  • Särkkä, H., Bhatnagar, A., & Sillanpää, M. (2015). Recent developments of electro-oxidation in water treatment—a review. Journal of Electroanalytical Chemistry, 754, 46-56.
  • Umar, M., Aziz, H. A., Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste management, 30(11), 2113-2121.
  • Haapea, P., Korhonen, S., Tuhkanen, T. (2002). Treatment of industrial landfill leachates by chemical and biological methods: ozonation, ozonation+ hydrogen peroxide, hydrogen peroxide and biological post-treatment for ozonated water. Ozone: Science & Engineering, 24(5), 369-378.
  • Li, N., Wang, P., Liu, Q., & Cao, H. (2010). Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid. Journal of Environmental Sciences, 22(1), 56-61.
  • Berlin, A. A. (1986). Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds Kinet. Catal. (Engl. Transl). 27(1 PT 1).
  • House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 62(3), 185-203.
  • Huang, K. C., Couttenye, R. A., Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413-420.
  • Koçak, S., Güney, C., Argun, M. T., Tarkin, B., Kirtman, E. Ö., Akgül, D., & Mertoglu, B. (2013). Treatment of landfill leachate by advanced oxidation processes. Marmara Fen Bilimleri Dergisi, 25(2), 51-64.
  • Al-Kdasi, A., Idris, A., Saed, K., Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes—a review. Global nest: the International Journal, 6(3), 222-230.
  • Oliveira, C., Alves, A., & Madeira, L. M. (2014). Treatment of water networks (waters and deposits) contaminated with chlorfenvinphos by oxidation with Fenton’s reagent. Chemical Engineering Journal, 241, 190-199.
  • Duan, P., Pan, J., Du, W., Yue, Q., Gao, B., & Xu, X. (2021). Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal. Applied Catalysis B: Environmental, 299, 120714.
  • Gautam, P., Kumar, S., & Lokhandwala, S. (2019). Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. Journal of Cleaner Production, 237, 117639.
  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551.
  • Tchobanoglus, G., Burton, F., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse 4th ed. McGraw-Hill Higher, Boston, 1819.
  • Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256.
  • Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 53(1), 51-59.
  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631.
  • Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, 12(1), 102.
  • Bo, L., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Research, 40(16), 3061-3068.
  • Chen, J., Xue, S., Song, Y., Shen, M., Zhang, Z., Yuan, T., & Dionysiou, D. D. (2016). Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution. Journal of hazardous materials, 310, 226-234.
  • Zhang, Z., Shan, Y., Wang, J., Ling, H., Zang, S., Gao, W., & Zhang, H. (2007b). Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials, 147(1-2), 325-333.
  • Quan, X., Zhang, Y., Chen, S., Zhao, Y., & Yang, F. (2007). Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. Journal of Molecular Catalysis A: Chemical, 263(1-2), 216-222.
  • Shen, M., Fu, L., Tang, J., Liu, M., Song, Y., Tian, F., & Dionysiou, D. D. (2018). Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants. Journal of hazardous materials, 350, 1-9.
  • Wei, R., Wang, P., Zhang, G., Wang, N., & Zheng, T. (2020). Microwave-responsive catalysts for wastewater treatment: A review. Chemical Engineering Journal, 382, 122781.
  • Qiu, Y., Zhou, J., Cai, J., Xu, W., You, Z., & Yin, C. (2016). Highly efficient microwave catalytic oxidation degradation of p-nitrophenol over microwave catalyst of pristine α-Bi2O3. Chemical Engineering Journal, 306, 667-675.
  • Qiu, Y., & Zhou, J. (2019). Highly effective and green microwave catalytic oxidation degradation of nitrophenols over Bi2O2CO3 based composites without extra chemical additives. Chemosphere, 214, 319-329.
  • Sun, C., Chen, C., Ma, W., & Zhao, J. (2011). Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation. Physical Chemistry Chemical Physics, 13(6), 1957-1969.
  • Xu, D., Lai, X., Guo, W., & Dai, P. (2017a). Microwave-assisted catalytic degradation of methyl orange in aqueous solution by ferrihydrite/maghemite nanoparticles. Journal of water process engineering, 16, 270-276.
  • Zhang, M. H., Dong, H., Zhao, L., & Wang, D. X., Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110-121.
  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121-135.
  • Sharma, A., Ahmad, J., & Flora, S. J. S. (2018). Application of advanced oxidation processes and toxicity assessment of transformation products. Environmental Research, 167, 223-233.
  • Fernandes, A., Labiadh, L., Ciríaco, L., Pacheco, M. J., Gadri, A., & Ammar, S., Lopes, A. (2017). Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. Chemosphere, 184, 1223-1229.
  • Xu, J., Long, Y., Shen, D., Feng, H., & Chen, T. (2017b). Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates. Journal of hazardous materials, 323, 674-680.
  • Deng, J., Shao, Y., Gao, N., Deng, Y., Zhou, S., & Hu, X. (2013). Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chemical Engineering Journal, 228, 765-771.
  • Anipsitakis, G. P., Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705-3712.
  • Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chemical Engineering Journal, 310, 41-62.
  • Hu, P., & Long, M. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103-117.
  • Abramovitch, R. A., Bangzhou, H., Abramovitch, D. A., & Jiangao, S. (1999). In situ decomposition of PAHs in soil and desorption of organic solvents using microwave . Chemosphere, 39(1), 81-87.
  • Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H., & Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chemical Engineering Journal, 249, 6-14.
  • Qi, C., Liu, X., Lin, C., Zhang, H., Li, X., & Ma, J. (2017). Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chemical Engineering Journal, 315, 201-209.
  • Tripathy, B. K., & Kumar, M. (2019). Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: Assessment of bio-toxicity, effect of pretreatment and cost-analysis. Waste Management, 85, 18-29.
  • Bolong, N., Ismail, A. F., Salim, M. R., Rana, D., Matsuura, T., & Tabe-Mohammadi, A. (2010). Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol A from wastewater. Separation and Purification Technology, 73(2), 92-99.
  • Wang, N., Zheng, T., Jiang, J., Wang, P. (2015). Cu (II)–Fe (II)–H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chemical Engineering Journal, 260, 386-392.
  • Cheng, G., Lin, J., Lu, J., Zhao, X., Cai, Z., Fu, J. (2015). Advanced treatment of pesticide-containing wastewater using Fenton reagent enhanced by microwave electrodeless ultraviolet. BioMed research international, 2015.
  • Bradu, C., Frunza, L., Mihalche, N., Avramescu, S. M., Neaţă, M., Udrea, I. (2010). Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3. Applied Catalysis B: Environmental, 96(3-4), 548-556.
  • Kim, J. R., Huling, S. G., & Kan, E. (2015). Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon. Chemical Engineering Journal, 262, 1260-1267.
  • Pan, W., Zhang, G., Zheng, T., & Wang, P. (2015). Degradation of p-nitrophenol using CuO/Al₂O₃ as a Fenton-like catalyst under microwave irradiation. RSC advances, 27043-27051.
  • Chou, Y. C., Lo, S. L., Kuo, J., & Yeh, C. J. (2015). Microwave-enhanced persulfate oxidation to treat mature landfill leachate. Journal of hazardous materials, 284, 83-91.
  • Yeh, C. J., Lo, S. L., Kuo, J., & Chou, Y. C. (2018). Optimization of landfill leachate treatment by microwave oxidation using the Taguchi method. International Journal of Environmental Science and Technology, 15(10), 2075-2086.
  • Jiang, B. H., Zhao, Y., Jin, Y., Hu, X. M., Jiang, L., & Li, X. M. (2012). Study on coupled oxidation and microwave process in treating urban landfill leachate by fenton and fenton-Like reaction. Advanced Materials Research, 393, pp. 1443-1446.
  • Kim, Y. B., & Ahn, J. H. (2016). Microwave-assisted decomposition of landfill leachate with persulfate. Journal of Environmental Engineering, 142(3), 04015084.
  • Chen, W., Zhang, A., Gu, Z., & Li, Q. (2018). Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chemical Engineering Journal, 354, 680-691.
  • Wang, J., Ma, X. P., Tang, F. D., Yang, C. L., Li, Y., & Guo, B. (2011). Study on pretreatment of landfill leachate by microwave-assisted catalytic oxidation process. China Environmental Science, 31(7), 1166-1170.
  • Na, L. I., Xiaoming, L. I., Qi, Y. A. N. G., Xian, L., & XiuQiong, W. (2014). Landfill leachate treatment by microwave-enhanced persulfate oxidation process using activated carbon as catalyst. China Environmental Science, 34(1), 91-96.
  • Chian, E. S., & Dewalle, F. B. (1976). Sanitary landfill leachates and their treatment. Journal of the Environmental Engineering Division, 102(2), 411-431.
  • Vishnuganth, M. A., Remya, N., Kumar, M., & Selvaraju, N. (2017). Carbofuran removal in continuous-photocatalytic reactor: reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. Journal of Environmental Science and Health, Part B, 52(5), 353-360.
  • Wang, J., Liao, Z., Ifthikar, J., Shi, L., Du, Y., Zhu, J., & Chen, Z. (2017). Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere, 185, 754-763.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ