Manisa İçin Farklı Tipteki Trombe Duvarlarının Enerji, Ekonomi ve Çevresel Analiz Sonuçlarının Karşılaştırması

Dünya genelinde artan enerji talebi ve bu talebin fosil kaynaklı yakıtlardan karşılanması küresel ısınma gibi olumsuz sonuçlar doğurmaktadır. Bu sonuçların etkisini azaltmak için yenilenebilir kaynakların kullanımı önem kazanmaktadır. Binaların ısıtılması da enerjiye bağımlılığı fazla olan bir alandır, bu alanda güneş enerjisinden yararlanmak güneşlenme süresi fazla olan konumlar için avantajlıdır. Manisa da güneşlenme süresi bakımından avantajlıdır. Güneş ile ısıtma uygulamalarından bir tanesi Trombe duvarıdır. Bu çalışma kapsamında klasik bir Trombe duvarı (Tip-1) ve farklı yapıda bir Trombe duvarı (Tip-2) tasarımı yapılmıştır ve bu iki tip duvarın enerji, ekonomik ve çevresel analizleri karşılaştırılmıştır. Analizlerde Trombe duvarları için önemli birer parametre olan hava boşluğu genişliği ve toplam güneş ışınım miktarı değişimi ele alınmıştır. Yapılan hesaplamalar sonucunda Ocak ayı için ideal çalışma parametrelerinde (500 W/m2 toplam güneş ışınım miktarı ve 0,35 m hava boşluğu genişliği için) Tip-1 ve Tip-2 duvarlar için enerji verimliliği sırasıyla 0,37 ve 0,46 olarak bulunmuştur. Yine bu parametrelerde iç ortam sıcaklığının saat 15.00’te Tip-1 ve Tip-2 duvarlar için 19,6 oC ve 21,8 oC’lik maksimum değerlere çıktığı hesaplanmıştır. Ekonomik analize göre Tip-1 ve Tip-2 duvarların geri ödeme süreleri sırasıyla 7,3 ve 6,9 yıl olarak bulunmuştur. Tip-1 ve Tip-2 duvarların kullanımı aynı zamanda karbon salımında da toplamda sırasıyla 5985,5 kg ve 6405 kg azalma sağlamıştır.

Comparison of Energy, Economy, and Environmental Analysis Results of Different Types of Trombe Walls for Manisa

Increasing energy demand around the world and meeting this demand from fossil fuels cause negative consequences such as global warming. For reducing the impact of these results, the use of renewable resources is gaining importance. Heating of buildings is a high energy dependent process, thus benefiting from solar energy is advantageous for locations with a long hours of sunshine. Manisa is also advantageous in terms of sunshine duration. One of the solar heating applications is the Trombe wall. In this study, a classical Trombe wall (Type-1) and a different type of Trombe wall (Type-2) were designed and these two types of walls were compared in terms of energy, economic and environmental aspects. During analyzes, the air channel depth and the variation of solar radiation intensity, which are important parameters for Trombe walls, are discussed. As a result of the calculations, the energy efficiency for Type-1 and Type-2 walls was found to be 0,37 and 0,46, respectively, at the optimized operating parameters for January (for 500 W/m2 solar radiation intensity and 0,35 m air duct depth). Again with these parameters, it has been calculated that the indoor temperature rises to the maximum values of 19,6 oC and 21,8 oC for Type-1 and Type-2 walls at 15.00. Economic analysis indicated that payback period of the Type-1 and Type-2 walls are 7,3 and 6,9 years, respectively. It has been calculated that the use of Type-1 and Type-2 walls provides a reduction of 5985,5 kg and 6405 kg in total carbon emissions, respectively.

___

  • IEA World. Energy outlook special report (2015): energy and climate change. France: OECD/IEA; 2015. (2015). IEA World. Energy outlook special report 2015: energy and climate change. France: OECD/IEA; 2015. https://doi.org/10.1016/B978-008044910-4.00561-7
  • Sergei, K., Shen, C., & Jiang, Y. (2020). A review of the current work potential of a trombe wall. Renewable and Sustainable Energy Reviews, 130(October 2019) . https://doi.org/10.1016/j.rser.2020.109947
  • Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296. https://doi.org/10.1016/S0301-4215(03)00241-6
  • Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/J.RSER.2017.09.094
  • Duan, S., Jing, C., & Zhao, Z. (2016). Energy and exergy analysis of different Trombe walls. Energy and Buildings, 126, 517–523. https://doi.org/10.1016/j.enbuild.2016.04.052
  • Review, B., & Koehler, K. (2014). The Solar House: Pioneering Sustainable Design. By Anthony Denzer. New York: Rizzoli, 2013. Arts 2014, Vol. 3, Pages 303-306, 3(3), 303–306. https://doi.org/10.3390/ARTS3030303
  • Hu, Z., He, W., Ji, J., & Zhang, S. (2017). A review on the application of Trombe wall system in buildings. Renewable and Sustainable Energy Reviews, 70, 976–987. https://doi.org/10.1016/J.RSER.2016.12.003
  • Saadatian, O., Sopian, K., Lim, C. H., Asim, N., & Sulaiman, M. Y. (2012). Trombe walls: A review of opportunities and challenges in research and development. Renewable and Sustainable Energy Reviews, 16(8), 6340–6351. https://doi.org/10.1016/J.RSER.2012.06.032
  • Randjelovic, D., Vasov, M., Ignjatovic, M., Bogdanovic-Protic, I., & Kostic, D. (2018). Impact of trombe wall construction on thermal comfort and building energy consumption. Facta Universitatis - Series: Architecture and Civil Engineering, 16(2), 279–292. https://doi.org/10.2298/fuace180302008r
  • Hernández-López, I., Xamán, J., Chávez, Y., Hernández-Pérez, I., & Alvarado-Juárez, R. (2016). Thermal energy storage and losses in a room-Trombe wall system located in Mexico. Energy, 109, 512–524. https://doi.org/10.1016/J.ENERGY.2016.04.122
  • Modulated Facade System: Trombe Wall And Glazing Study For Different Portuguese Climates Sistema De Fachada Modular: Estudios De Muro Trombe Y Doble | Semantic Scholar. (n.d.). Retrieved March 1, 2022, from https://www.semanticscholar.org/paper/Modulated-Facade-System%3A-Trombe-Wall-And-Glazing-De-Diferentes-Portugueses/5b595045b56103372e1767a0573514b5acac1880
  • Stazi, F., Mastrucci, A., & Di Perna, C. (2012). The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study. Energy and Buildings, 47, 217–229. https://doi.org/10.1016/J.ENBUILD.2011.11.039
  • Stazi, F., Mastrucci, A., & Munafò, P. (2012). Life cycle assessment approach for the optimization of sustainable building envelopes: An application on solar wall systems. Building and Environment, 58, 278–288. https://doi.org/10.1016/J.BUILDENV.2012.08.003
  • Zalewski, L., Lassue, S., Duthoit, B., & Butez, M. (2002). Study of solar walls — validating a simulation model. Building and Environment, 37(1), 109–121. https://doi.org/10.1016/S0360-1323(00)00072-X
  • Błotny, J., & Nem´s, M. N. (2019). Analysis of the Impact of the Construction of a Trombe Wall on the Thermal Comfort in a Building Located in Wrocław, Poland. https://doi.org/10.3390/atmos10120761
  • Olenets, M., Piotrowski, J. Z., & Stroy, A. (2015). Heat transfer and air movement in the ventilated air gap of passive solar heating systems with regulation of the heat supply. Energy and Buildings, 103, 198–205. https://doi.org/10.1016/J.ENBUILD.2015.05.051
  • Bojić, M., Johannes, K., & Kuznik, F. (2014). Optimizing energy and environmental performance of passive Trombe wall. Energy and Buildings, 70, 279–286. https://doi.org/10.1016/J.ENBUILD.2013.11.062
  • Briga Sá, A., Boaventura-Cunha, J., Lanzinha, J. C., & Paiva, A. (2017). An experimental analysis of the Trombe wall temperature fluctuations for high range climate conditions: Influence of ventilation openings and shading devices. Energy and Buildings, 138, 546–558. https://doi.org/10.1016/j.enbuild.2016.12.085
  • Dabaieh, M., & Elbably, A. (2015). Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates. Solar Energy, 122, 820–833. https://doi.org/10.1016/J.SOLENER.2015.10.005
  • Özbalta, T. G., & Kartal, S. (2010). Heat gain through Trombe wall using solar energy in a cold region of Turkey. Scientific Research and Essays, 5(18), 2768–2778. Retrieved from http://www.academicjournals.org/SRE
  • Abbassi, F., Dimassi, N., & Dehmani, L. (2014). Energetic study of a Trombe wall system under different Tunisian building configurations. Energy and Buildings, 80, 302–308. https://doi.org/10.1016/J.ENBUILD.2014.05.036
  • Hami, K., Draoui, B., & Hami, O. (2012). The thermal performances of a solar wall. Energy, 39(1), 11–6. https://doi.org/10.1016/J.ENERGY.2011.10.017
  • Fiorito, F. (2012). Trombe Walls for Lightweight Buildings in Temperate and Hot Climates. Exploring the Use of Phase-change Materials for Performances Improvement. Energy Procedia, 30, 1110–1119. https://doi.org/10.1016/J.EGYPRO.2012.11.124
  • Zalewski, L., Chantant, M., Lassue, S., & Duthoit, B. (1997). Experimental thermal study of a solar wall of composite type. Energy and Buildings, 25(1), 7–18. https://doi.org/10.1016/S0378-7788(96)00974-7
  • Liu, Yanfeng, Wang, D., Ma, C., & Liu, J. (2013). A numerical and experimental analysis of the air vent management and heat storage characteristics of a trombe wall. Solar Energy, 91, 1–10. https://doi.org/10.1016/J.SOLENER.2013.01.016
  • Kaya, E. S., Aksel, M., Yigit, S., & Acikara, T. (2021). A numerical study on the effect of vent/wall area ratio on Trombe wall thermal performance. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 174(5), 224–234. https://doi.org/10.1680/jensu.20.00064
  • Bellos, E., Tzivanidis, C., Zisopoulou, E., Mitsopoulos, G., & Antonopoulos, K. A. (2016). An innovative Trombe wall as a passive heating system for a building in Athens—A comparison with the conventional Trombe wall and the insulated wall. Energy and Buildings, 133, 754–769. https://doi.org/10.1016/j.enbuild.2016.10.035
  • Guarino, F., Athienitis, A., Cellura, M., & Bastien, D. (2017). PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates. Applied Energy, 185, 95–106. https://doi.org/10.1016/J.APENERGY.2016.10.046
  • Chow, T. T., Hand, J. W., & Strachan, P. A. (2003). Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Applied Thermal Engineering, 23(16), 2035–2049. https://doi.org/10.1016/S1359-4311(03)00183-2
  • Liu, Yiwei, & Feng, W. (2012). Integrating Passive Cooling and Solar Techniques into the Existing Building in South China. Advanced Materials Research, 368–373, 3717–3720. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.368-373.3717
  • Tunç, M., & Uysal, M. (1991). Passive solar heating of buildings using a fluidized bed plus Trombe wall system. Applied Energy, 38(3), 199–213. https://doi.org/10.1016/0306-2619(91)90033-T
  • Global Solar Atlas. (n.d.). Retrieved March 2, 2022, from https://globalsolaratlas.info/map?c=38.612579,27.433397,11&s=38.612579,27.433397&m=site
  • Piotrowski, J. Z., Stroy, A., & Olenets, M. (2013). Mathematical modelling of the steady state heat transfer processes in the convectional elements of passive solar heating systems. Archives of Civil and Mechanical Engineering, 13(3), 394–400. https://doi.org/10.1016/j.acme.2013.02.002
  • JRC Photovoltaic Geographical Information System (PVGIS) - European Commission. (n.d.). Retrieved December 25, 2022, from https://re.jrc.ec.europa.eu/pvg_tools/en/#HR
  • Zhang, H., & Shu, H. (2019). A Comprehensive Evaluation on Energy, Economic and Environmental Performance of the Trombe Wall during the Heating Season. Journal of Thermal Science, 28(6), 1141–1149. https://doi.org/10.1007/s11630-019-1176-7
  • Kanoğlu, M., & Üniversitesi, G. (n.d.). Enerji Verimliliği Örnek Projeleri.
  • Rabani, M., Kalantar, V., Dehghan, A. A., & Faghih, A. K. (2015). Experimental study of the heating performance of a Trombe wall with a new design. Solar Energy, 118, 359–374. https://doi.org/10.1016/j.solener.2015.06.002