Isı Enerjisi Depolayan Faz Değişim Malzemelerinin Üretimi

Bu çalışmada; Parafin, Polietilen glikol 600, üç farklı yüzey aktif madde (Lineer Alkil Benzen Sülfonik Asit, Setil Trimetil Amonyum Klorür ve Kokoamidopropil Betain) ve atık lastiğin kimyasal bozundurulması sonucu elde edilen Geri Kazanılmış Karbon kullanılarak Organik Faz Değişim Malzemesi üretilmiştir. Organik Faz Değişim Malzemeleri basit bir karıştırma ve vakum emdirme yöntemiyle üretilmiştir. Farklı türdeki yüzey aktif maddelerin kullanıldığı farklı kompozisyonlarda elde edilen numunelere; faz değişim sıcaklık farkı testleri yapılarak en yüksek faz değişim sıcaklık farkına sahip numuneler belirlenmiştir. Belirlenen bu numunelerin (FM13; FM20 ve FM26 Kodlu) kimyasal ve termal özellikleri, Fourier Dönüşümlü Kızılötesi Spektrotometresi ve Diferansiyel Taramalı Kalorimetri cihazı kullanılarak belirlenmiştir. En yüksek enerji depolama kapasitesine (85,64 j/g) sahip numunenin; Setil Trimetil Amonyum Klorür yüzey aktif maddesi içeren FM-26 kodlu numune olduğu belirlenmiştir.

Production of Phase Change Materials Storing Heat Energy

In this study; Organic Phase Change Material was produced using Paraffin, Polyethylene glycol 600, three different surfactants (Linear Alkyl Benzene Sulfonic Acid, Cetyl Trimethyl Ammonium Chloride and Cocoamidopropyl Betaine), and Recycled Carbon obtained as a result of chemical decomposition of waste tire. Organic Phase Change Materials are produced by a simple mixing and vacuum impregnation method. Samples were obtained in different compositions using different types of surfactants. Samples with the highest phase change temperature difference were determined by performing phase change temperature difference tests. The chemical and thermal properties of these samples (FM13; FM20 and FM26 Coded) were determined using Fourier Transform Infrared Spectrophotometer and Differential Scanning Calorimetry device. It was determined that the sample with the highest energy storage capacity (85.64 j/g) was FM-26 coded sample containing Cetyl Trimethyl Ammonium Chloride as surfactant.

___

  • [1] Sharma, A., Tyagi V., Chen, C. & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345.
  • [2] Wagner, L. (2007). Overview of energy storage methods. Mora Associates. https://www.moraassociates.com/. [3] Bauer, T., Steinmann W., Laing D. & Tamme, R. (2012). Thermal energy storage materials and systems. Pfaffen waldring, 38-40, 70569.
  • [4] Cunha, J.P. & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – a review. Applied Energy, 177, 227-238.
  • [5] Geete, P. & Somani, S. (2017). Thermal energy storage: A review. International Journal of Engineering Science Invention, 6(8), 1-10.
  • [6] Rathod, A., Bandela, C. & Rehman, A. (2017). Experimental study on phase change material based thermal energy storage system. International research journal of engineering and technology, 4(11), 1833-1838.
  • [7] Kanimozhi, B., Harish, K., Tarun, B.S., Reddy, P. & Sujeeth, P.S. (2017). Charging and discharging processes of thermal energy storage system using phase change materials. IOP Publishing, 197, 012040.
  • [8] Hale, D., Hoover M. & O’Neill, M. (1971). Phase change materials handbook. Marshal space fight center, Alabama, 232.
  • [9] Oro, E., Gracia, A., Castell, A., Farid, M.M. & Cabeza, L.F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513-533.
  • [10] Peng, G., Dou, G., Hu, Y., Sun, Y. & Chen, Z. (2020). Review article phase change material microcapsules for thermal energy storage. HindawiAdvances in Polymer Technology, 9490873, 20.
  • [11] Prasad, D., Senthilkumar, R., Lakshmanarao, G., Krishnan, S. & Prasad, N. (2019). A critical review on thermal energy storage materials and systems for solar applications. Aims energy, 7(4), 507-526.
  • [12] Amaral, C., Vicente, R., Marques, P. A. A. P. & Barros-Timmons, A., (2017). Phase change materials and carbon nanostructures for thermal energystorage: A literature review. Renewable and Sustainable Energy Reviews, 79, 1212-1228.
  • [13] Anusha, A. S. (2016). Phase change materials. International Journal of Engineering Research and General Science, 4(2), 332-338.
  • [14] Arshad, A., Jabbal, M., Yan, Y. & Darkwa, J. (2019). Themicro/nano FDM for thermal energy storage systems: a state of art review. International Journal of Energy Research, 43(11), 5572-5620.
  • [15] Shchukina, E., Graham, M., Zheng, Z., & Shchukin, D. (2018). Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Royalsociety of Chemistry, 47, 4156.
  • 16] Socaciu, L.G. (2012). Thermal energy storage with phase change material. Leonardo electronic journal of practices and technologies, 20, 75-98.
  • [17] Balbay, S. (2017). Atık lastiklerin kimyasal yöntemle bozundurulması ve elde edilen ürünlerin değerlendirilmesi. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Bilecik.
  • [18] Kee, S.Y., Munusamy, Y., Ong, K.S., Metselaar, H.S.C., Chee, S.Y., & Lai, K.C. (2017). Thermal Performance Study of Composite Phase Change Material with Polyacrylic and Conformal Coating, Materials, 10, 873.
  • [19] İbiş, H. (2014). Ti-Niötektik alaşımlarının termal ve mekanik özelliklerinin incelenmesi. Bozok Üniversitesi, Fen bilimleri Enstitüsü Fizik Ana Bilim Dalı, Yüksek Lisans Tezi, Yozgat.
  • [20] Aker, A. (2015). Al-Si ötektik alaşımına yapılan katkı elementlerinin (Cu, Co, Ni, Sb ve Bi) mikroyapı ve fiziksel özelliklerine etkisinin araştırılması. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı, Doktora Tezi, Kayseri.
  • [21] Biçer, A. & Sarı, A. (2017). Isıl enerji depolama amaçlı yapıca kararlı yeni bir faz değişim malzemesi olarak Silikafume /Polietilen Glikol (PEG) kompoziti. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 683-690.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Covid-19 Pandemi Sürecinde Ülkelerin Demokratik Önlemlerinin Etkilerinin Homojen Tekdüze İlişki Modeli ile İncelenmesi

Merve POSLU, Melike BAHÇECİTAPAR, Serpil AKTAŞ

Giyilebilir Teknolojik Ürünlerin Tasarımında Etkili Olan Faktörlerin Best-Worst Metodu (BWM) İle Değerlendirilmesi

Gözde KOCA, Ezgi Dilan URMAK AKÇAKAYA

Mondrian Tabanlı Kimliksizleştirme Modeli

İrem CİVELEK, Muhammed Ali AYDIN

Cyclamen Mirabile Soğanından Lektin Saflaştırılması ve Karakterizasyonu

Ebru KOCADAĞ KOCAZORBAZ, Ayşe Yağmur AZBAZDAR, Merve ALİAKAR ÖZTÜRK, Esra MENFAATLİ

Yumurta Kabuğundan Alınan Akustik Sinyalin Dalgacık Paket Dönüşümü ve Entropiye Dayalı Olarak İşlenmesi ve Yapay Sinir Ağlarıyla Çatlağın Belirlenmesi

Zekeriya BALCI, Mehmet YUMURTACI, İsmail YABANOVA, Semih ERGİN

Toprak Nem İçeriğinin İzlenmesi ve Tayininde Kullanılan Yöntemler

Ali Kaan YETİK, Mehmetcan AŞIK

Dopamin, NADH ve Askorbik Asitin Elektroyükseltgenmesine Elektrokimyasal Olarak İndirgenmiş Grafen Oksit, Politiyonin ve Altın Nanopartiküllerin Etkisi

Melike BİLGİ KAMAÇ, Muhammed ALTUN, Merve YILMAZ

İHA Bataryasının Şarj Pedi ile Dengeli Şarj Edilmesi ve Gerçek Zamanlı İzleme Sistemi

Hakan ÜÇGÜN, Uğur YÜZGEÇ, Cüneyt BAYILMIŞ

Bir Mekanik Montaj Sisteminde Tolerans Yığılması ve Tolerans Alanının Genişletilmesi

Fikret SÖNMEZ, Şehmus BADAY

Serada Silicon Labs Si7021 Kablosuz Sensör Sistemlerinin Sıcaklık ve Neme Göre Pil Tüketimindeki Değişimlerinin Belirlenmesi

Celil Serhan TEZCAN, Kemal Sulhi GÜNDOĞDU