Endüstride Yaygın Olarak Kullanılan Asit Çözeltileri İçinde AA5754 Yüzeyinin ve Korozyon Davranışının İncelenmesi
Çeşitli uygulama alanlarında elektrolit olarak kullanılabilecek borik asit (H3BO3), tartarik asit (TA), okzalik asit (H2C2O4), hidroklorik asit (HCl), hidroflorik asit (HF) ve tetrafloroborikasitin (HBF4) sulu çözeltileri içinde alüminyum 5754 alaşımının (AA5754) korozyon çalışmaları gerçekleştirilerek ortamdaki asit niteliğinin aliminyum oksit oluşumu üzerine etkisi birbiriyle karşılaştırılarak incelenmiştir. Asitlerde bekletilen AA5754 yüzeyi XRD, XPS, AFM ve profilometre yöntemleri ile karakterize edilmiştir. XRD sonuçları Al2O3 oluşumunu gösterirken XPS sonuçları bu oluşumun doğrulanmasının yanında spektrumda B, O, C, Cl ve F piklerinin gözlenmesi nedeniyle asitlerin yüzeye adsorblandığına işaret etmiştir. AFM ve profilometre görüntülerinden H3BO3, TA ve H2C2O4 ortamlarında elde edilen oksit tabakalarının HCl, HF ve HBF4’dekilere göre daha düzgün topografyaya sergilediği belirlenmiştir. Tüm asitler karşılaştırıldığında H3BO3 ortamında en düşük pürüzlülük değerlerine (24.28 nm) sahip, homojen ve en kalın (15.4 nm) oksit filmin oluştuğu belirlenirken HBF4 ortamında tam tersidir (sırasıyla 99.44 nm ve 0.64 nm). AA5754 numunesinin korozyon davranışı asit çözeltileri içinde OCP, Tafel ve EIS ölçümleri ile incelenmiştir. Buna göre HBF4, HF, HCl, H2C2O4, TA ve H3BO3 sıralamasıyla OCP değerleri pozitif potansiyellere kaymakta, ikor değerleri azalmakta ve Rct değerleri artmaktadır. AA5754 numunesi HF ve HBF4 ortamlarında diğerlerine göre çok farklı bir korozyon davranışı sergilediği gözlenmiştir. Bunun nedeni HBF4’ün sulu ortamda kısmi ayrışması sonucu üretilen HF sayesinde yüzeyde AlF6-3 kompleksinin oluşumu ile çözünmenin daha fazla gerçekleşmesi olmalıdır. Tersine, H3BO3'te ortaya çıkan oksit tabakası, korozyona karşı en etkili yüzeyi sağlamıştır, çünkü diğerlerine göre zayıf asidik karakteri (pKa = 9.27) nedeniyle çekirdeklenme ve ardından pasivasyon çok hızlı gerçekleşmektedir.
Investigation of Surface and Corrosion Behaviour of AA5754 in Acid Solutions Commonly Used in Industry
Corrosion studies of aluminum 5754 alloy (AA5754) immersed in aqueous solutions which could be used as electrolytes in various application areas were carried out. The effect of acid type on the aluminum oxide formation was investigated for boric acid (H3BO3), tartaric acid (TA), oxalic acid (H2C2O4), hydrochloric acid (HCl), hydrofluoric acid (HF), and tetrafluoroboric acid (HBF4) by comparing with each other. AA5754 surface was characterized by XRD, XPS, AFM, and profilometer methods. While Al2O3 formation was determined in XRD results of all acids, it was confirmed the Al2O3 formation in the XPS spectra and indicated that the acids were adsorbed on the surface due to the presence of B, O, C, Cl, and F peaks. According to the AFM and profilometer images, it was determined that the oxide layers obtained in H3BO3, TA, and H2C2O4 media exhibited a more uniform topography than those in HCl, HF, and HBF4. When all acids were compared, it was determined that the homogeneous and thickest (15.4 nm) oxide film with the lowest roughness values (24.28 nm) was formed in the H3BO3 medium, while the results obtained in HBF4 were the opposite (99.44 nm and 0.64 nm, respectively). The corrosion behavior of the AA5754 sample was investigated by OCP, Tafel, and EIS measurements in acid solutions. Accordingly, it was determined that OCP values shifted to the positive potentials, icorr values decreased, and Rct values increased in the order of HBF4, HF, HCl, H2C2O4, TA, and H3BO3. It was found that the AA5754 specimen exhibited different corrosion behavior in HF and HBF4 media compared to the others. The reason should be the formation of the AlF6-3 complex due to HF produced as a result of the partial decomposition of HBF4 in the aqueous medium. Thus, the dissolution of aluminum carried out much more. Conversely, the oxide layer formed in H3BO3 provided the most effective surface against corrosion. It was because the nucleation and subsequent passivation occurred very rapidly thanks to its weak acidic character (pKa = 9.27) relative to the others.
___
- [1] Nik, W. M. N. W., & Olanrewaju, O. S., & Zulkifli, F. & Ahmad, M.Rosliza, R. (2014). Corrosion of Aluminium Alloy in Seawater and Development of Green Corrosion Inhibitor for Marine Applications. Marine Technology and Sustainable Development: Green Innovations, 146-156.
- [2] Xhanari, K., & Finšgar, M. (2016). Organic corrosion inhibitors for aluminium and its alloys in acid solutions: a review. RSC advances, 6(67) 62833-62857.
- [3] Li, S. Y., & Church, B. C. (2017). Electrochemical stability of aluminum current collector in aqueous rechargeable lithium-ion battery electrolytes. Journal of Applied Electrochemistry, 47(7) 839-853.
- [4] Ud Din, R., Jellesen, M. S., & Ambat, R. (2015). Role of acidic chemistries in steam treatment of aluminium alloys. Corrosion Science, 99 258-271.
- [5] Du, N., & Wang, S. X., Zhao, Q., & Shao, Z. S. (2012). Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy. Transactions of Nonferrous Metals Society of China, 22(7), 1655-1660.
- [6] Ban, C. L., He, Y. D. & Shao, X. (2013). Effect of trace tartaric acid on anodizing of etched aluminum foil for high voltage electrolytic capacitor. Journal of Materials Science-Materials in Electronics, 24(9), 3442- 3447.
- [7] Cadwell, S. L., & Lindsey, D. (2003) Accelerated sulfuric acid and boric sulfuric acid anodize process, in Boeing Co, B. Co, Editor: United States.
- [8] Quebbou, Z., Chafi, M., & Omari, L. E. (2021). Corrosion resistance of 5005 aluminum alloy by anodizing treatment in a mixture of phosphoric and boric acids. Materials Today-Proceedings, 37, 3854-3859.
- [9] Saeedikhani, M., Javidi, M., & Vafakhah, S. (2017). Anodising of 2024-T3 aluminium alloy in electrolyte of sulphuric-boric-phosphoric mixed acid containing cerium salt as corrosion inhibitor. Transactions of Nonferrous Metals Society of China, 27(3), 711-721.
- [10] Marzocchi, V., Iglesias-Rubianes, L., Thompson, G. E., & Bellucci, F. (2007). The influence of tartaric acid additions on the anodizing behaviour of AA2024-T3 alloy in sulphuric acid. Corrosion Reviews, 25(3-4), 461-473.
- [11] Mert, B. D., Yazici, B., Tuken, T., Kardas, G., & Erbil, M. (2011). Anodizing and corrosion behaviour of aluminium. Protection of Metals and Physical Chemistry of Surfaces, 47(1), 102-107.
- [12] Li, Y. D., Zhang, Y., Li, S. M., & Zhao, P. Z. (2016). Influence of adipic acid on anodic film formation and corrosion resistance of 2024 aluminum alloy. Transactions of Nonferrous Metals Society of China, 26(2), 492-500.
- [13] Surganov, V. F., & Gorokh, G. G. (1993). Anodic Oxide Cellular Structure Formation on Aluminum Films in Tartaric Acid Electrolyte. Materials Letters, 17(3-4), 121-124.
- [14] Ma, Y., Zhou, X., Thompson, G. E., Curioni, M., Hashimoto, T., Skeldon, P., Thomson, P., & Fowles, M. (2011). Anodic Film Formation on AA 2099-T8 Aluminum Alloy in Tartaric-Sulfuric Acid. Journal of the Electrochemical Society, 158(2), C17-C22.
- [15] Choudhary, R. K., Mishra, P., Kain, V., Singh, K., Kumar, S., & Chakravartty, J. K. (2015). Scratch behavior of aluminum anodized in oxalic acid: Effect of anodizing potential. Surface & Coatings Technology, 283, 135-147.
- [16] Keshavarz, A., Parang, Z., & Nasseri, A. (2013). The effect of sulfuric acid, oxalic acid, and their combination on the size and regularity of the porous alumina by anodization. Journal of Nanostructure in Chemistry, 3(1).
- [17] Madakson, P. B., Malik, I. A., Laminu, S. K., & Bashir, I. G. (2012). Effect of Anodization on the corrosion behavior of Aluminium Alloy in HCl acid and NaOH. International Journal of Materials Engineering, 2(4), 38-42.
- [18] Thompson, G. E., & Wood, G. C. (1978). The effect of alternating voltage on aluminium electrodes in hydrochloric acid. Corrosion Science, 18(8), 721-746.
- [19] Yi, H., Gu, B., Yang, P., Gong, L., & Guo, D. (2013). Influence of boric acid on the performance of chromium-free non-oriented silicon steel coating. Jinshu Rechuli/Heat Treatment of Metals, 38(5), 67-70.
- [20] Devikala, S., Kamaraj, P., & Arthanareeswari, M. (2018). Corrosion resistance behavior of PVA/TiO 2 composite in 3.5% NaCl. Materials Today: Proceedings, 5(2), 8672-8677.
- [21] Liu, X., Zhang, T. C., He, H. Q., Ouyang, L. K., & Yuan, S. J. (2020). A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. Journal of Alloys and Compounds, 834.
- [22] Pu, Y., Hu, J., Yao, T., Li, L., Zhao, J., & Guo, Y. (2021). Influence of anodization parameters on film thickness and volume expansion of thick- and large-sized anodic aluminum oxide film. Journal of Materials Science: Materials in Electronics, 32(10), 13708-13718.
- [23] Choudhary, R. K., Sreeshma, K. P., & Mishra, P. (2017). Effect of Surface Roughness of an Electropolished Aluminum Substrate on the Thickness, Morphology, and Hardness of Aluminum Oxide Coatings Formed During Anodization in Oxalic Acid. Journal of Materials Engineering and Performance, 26(7), 3614-3620.
- [24] Domínguez-Crespo, M. A., Torres-Huerta, A. M., Rodil, S. E., Ramírez-Meneses, E., Suárez-Velázquez, G. G., & Hernández-Pérez, M. A. (2009). Effective corrosion protection of AA6061 aluminum alloy by sputtered Al–Ce coatings. Electrochimica Acta, 55(2), 498-503.
- [25] Yue, J. Y., & Cao, Y. (2015). Corrosion Prevention by Applied Coatings on Aluminum Alloys in Corrosive Environments. International Journal of Electrochemical Science, 10(7), 5222-5237.
- [26] Weast, R. C., Astle, M. J., & Beyer, W. H. (1988). CRC handbook of chemistry and physics. 69.
- [27] Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications. 2.
- [28] Khan, M. F., Kumar, A. M., Ul-Hamid, A., & Al-Hems, L. M. (2019). Achieving non-adsorptive anodized film on Al-2024 alloy: Surface and electrochemical corrosion investigation. Surfaces and Interfaces, 15, 78- 88.
- [29] Schweitzer, P. A. (2010). Fundamentals of Corrosion.
- [30] Mert, B. D. (2021). Yumuşak Çeliğin Korozyon Davranışı. 32.
- [31] Lu, J. Q., Wei, G. Y., Yu, Y. D., Guo, C. F., & Jiang, L. (2018). Aluminum alloy AA2024 anodized from the mixed acid system with enhanced mechanical properties. Surfaces and Interfaces, 13, 46-50.
- [32] Fariborz, A., Jahangiri, S., & Pahnavar, Z. (2019). Thermodynamic and Electrochemical Investigations of Poly(Methyl Methacrylate–Maleic Anhydride) as Corrosion Inhibitors for Mild Steel in 0.5 M HCl. Protection of Metals and Physical Chemistry of Surfaces, 55(6), 1161-1172.
- [33] Mohammadi, M., Yazdani, A., Bahrololoom, M. E., & Alfantazi, A. (2012). Corrosion behavior of 2024 aluminum alloy anodized in presence of permanganate and phosphate ions. Journal of Coatings Technology and Research, 10(2), 219-229.