Biyolojik Kaynaklı Monolitlerin Sentezi ve Karakterizasyonu
Kolloidal şablonlama, iyi tanımlanmış iki aşamalı gözenekliliğe ve değişen morfolojiye sahip makro gözenekli polimer monolitleri hazırlamak için kullanılan çok yönlü ve pratik bir yöntemdir. Bu yöntemle sentezlenen monolitler, avantajlı morfolojileri nedeniyle birçok alanda uygulama bulabilirler. Bu çalışmada, sürdürülebilir makro gözenekli polimer monolitlerin geliştirilmesi için yenilenebilir bir monomer kullanılmıştır. Bu amaçla, yenilenebilir monomer karışımının kopolimerizasyonu kolloidal sistemde esnek bir diakrilat çapraz bağlayıcı kullanılarak sağlandı. Monomer yapısının nihai malzeme özellikleri üzerindeki etkisini araştırmak için d-limonen eşdeğer oranlarda etilen glikol dimetakrilat (EGDMA) ile kopolimerize edildi. Son olarak, elde edilen sürdürülebilir makro gözenekli polimer monolitlerin termal ve morfolojik özellikleri sırasıyla Diferansiyel Taramalı Kalorimetri (DSC), Termal Gravimetrik Analiz (TGA) ve Taramalı Elektron Mikroskobu (SEM) ile araştırıldı. Ek olarak, elde edilen monolitik malzemelerin spesifik yüzey alanı, numunelerin N2 izotermlerine Brunauer–Emmet–Teller (BET) denklemi uygulanarak N2 adsorpsiyon/desorpsiyon analizleri ile ölçülmüştür. Bu yenilenebilir monomerin porojen etkisinden dolayı d-limonen varlığının olağanüstü tek delikli halka morfolojisine yol açtığı belirlendi.
Synthesis and Characterization of Bio-Derived Monoliths
Colloidal templating is a versatile and practical method to prepare macroporous polymer monoliths with a well-defined two-stage porosity and tuneable morphology. Due to their advantageous morphology colloidal templated monoliths can find application in many areas. In this study, a renewable monomer was used for the development of sustainable macroporous polymer monoliths. Copolymerization of a renewable monomer mixture in a colloidal system was achieved by using a flexible diacrylate crosslinker. For this purpose, d-limonene was copolymerized with ethylene glycol dimetacrylate (EGDMA) in equivalent ratios to investigate the effect of monomer structure on the final material properties. In the end, thermal and morphological properties of the resulting sustainable macroporous polymer monoliths were investigated by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM), respectively. Additionally, the specific surface area of the obtained monolithic materials was measured through N2 adsorption/desorption analyses by applying Brunauer–Emmet–Teller (BET) equation to the N2 isotherms of the samples. It was determined that the presence of d-limonene led to an extraordinary one-hollowed ring morphology due to the porogen effect of this renewable monomer.
___
- [1] Llevot, A., Dannecker, P. K., Czapiewski, M., Over, L. C., Söyler, Z., & Meier, M. A. R. (2016). Renewability is not enough: recent advances in the sustainable synthesis of biomass derived monomers and polymers. Chemical European Journal, 22, 11510 – 11521.
- [2] Yang, X., Li, S., Xia, J., Song, J., Huang, K., & Li, M. (2015). Renewable myrcene-based-UV-curable monomer and its copolymers with acrylated epoxidized soybean oil: design, preparation, and characterization. Bioresources, 10, 2130–2142.
- [3] Behr, A., & Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical review. Chemistry-Sustainability-Energy-Materials, 2, 1072– 1095.
- [4] Sibaja, B., Sargent, J., & Auad, M. L. (2014). Renewable thermoset copolymers from tung oil and natural terpenes. Journal of Applied Polymer Science, 131, 41155.
- [5] Ciriminna, R., Lomeli-Rodriguez, M, & Demma Carà, P. (2014). Limonene: a versatile chemical of the bioeconomy. Chemical Communications, 50, 15288–15296.
- [6] Aissou, M., Chemat-Djenni, Z., & Yara-Varón, E. (2017). Limonene as an agro-chemical building block for the synthesis and extraction of bioactive compounds. Comptes Rendus Chimie, 20, 346–358.
- [7] Matsuda, M., Satoh, K., & Kamigaito, M. (2013). 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. Journal of Polymer Chemistry, 51, 1774 -1785.
- [8] Singh, A., & Kamal, M. (2012). Synthesis and characterization of polylimonene: Polymer of an optically active terpene. Journal of Applied Polymer Science, 125, 1456 -1459.
- [9] Oliveira, E. R. M., & Vieira, R. P. (2020). Synthesis and Characterization of Poly (limonene) by Photoinduced Controlled Radical Polymerization. Journal of Polymers and the Environment, 28, 2931–2938.
- [10] Mathers, R. T., McMahon, K. C., Damodaran, K., Retarides, C. J., & Kelley, D. J. (2006). Ring-Opening Metathesis Polymerizations in D-Limonene: Renewable Polymerization Solvent and Chain Transfer Agent for the Synthesis of Alkene Macromonomers. Macromolecules, 39, 8982-8986.
- [11] Claudino, M., Jonsson, M., & Johansson, M. (2013). Thiol–ene coupling kinetics of D-limonene: a versatile ‘non-click’ free-radical reaction involving a natural terpene. RSC Advances, 3, 11021.
- [12] Lu, W. C., Zhang, T. J., Huang, D. W., & Li, P. H. (2014). Nanoemulsion of D-limonene in water system prepared by ultrasonic emulsification. Journal of Cosmetic Science, 65(4), 245-252.
- [13] Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1), 192-197.
- [14] Silverstein, M. S. (2014). Emulsion-templated porous polymers: A retrospective perspective. Polymer, 55, 304-320.
- [15] Zhang, T., Sanguramath, R. A., Israel, S., & Silverstein, M. S. (2019). Emulsion Templating: Porous Polymers and Beyond. Macromolecules, 52, 5445-5479.
- [16] Cameron, N. R. (2005). High internal phase emulsion templating as a route to well-defined porous polymers. Polymer, 46, 1439-1449.
- [17] Mert, E. H., & Kekevi, B. (2020). Synthesis of polyHIPEs through high internal phase emulsions of β– myrcene. Colloid and Polymer Science, 298, 1423-1432.
- [18] Crockett, M. P., Evans, A. M., Worthington, M. J. H., Albuquerque, I. S., Slattery, A. D., Gibson, C. T., Campbell, J. A., Lewis, D. A., Bernardes, G. J. L., & Chalker, J. M. (2016). Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil. Angewandte Chemie, 128, 1746-1750.
- [19] Kekevi, B., & Mert, E. H. (2021). Synthesis of β-myrcene-based macroporous nanocomposite foams: Altering the morphological and mechanical properties by using organo-modified nanoclay. Journal of Applied Polymer Science, e50074.
- [20] Barbetta, A., & Cameron, N. R. (2004). Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: span 80 as surfactant. Macromolecules, 37, 3188– 3201.
- [21] Ojika, M., Satoh, K., & Kamigaito, M. (2017). BAB- random-C Monomer Sequence via Radical Terpolymerization of Limonene (A), Maleimide (B), and Methacrylate (C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angewandte Chemie International Edition, 56, 1789 –1793.
- [22] Johanson, A. J., Mckennon, F. L., & Goldblatt, L. A. (1948). Emulsion polymerization of Myrcene. Industrial & Engineering Chemistry, 40, 500–502.
- [23] Trumbo, D. L. (1993). Free radical copolymerization behavior of myrcene I. Copolymers with styrene, methyl methacrylate or p-florostyrene. Polymer Bulletin, 31, 629–636.
- [24] Sarkar, P., & Bhowmick, A. K. (2014). Synthesis, characterization and properties of a bio-based elastomer: Polymyrcene. RSC Advances, 4, 61343–61354.
- [25] Sarkar, P., & Bhowmick, A. K. (2016). A Green approach towards sustainable polymer: synthesis and characterization of poly (myrcene-co-dibutyl itaconate). ACS Sustainable Chemistry & Engineering, 4, 2129–2141.
- [26] Modena, M., Bates, R. B., & Marvel, C. S. (1965). Some Low Molecular Weight Polymers of d-Limonene and Related Terpenes Obtained by Ziegler-Type Catalysts. Journal of Polymer Scıence: Part A, 3, 949-960.
- [27] Park, H. J., Ryu, C. Y., & Crivello, J. V. (2013). Photoinitiated cationic polymerization of limonene 1,2- oxide and α-pinene oxide. Journal of Polymer Science Part A: Polymer Chemistry, 51, 109–117.
- [28] Ye, G., Sun, Y., Zhou, X., Zhu, K., Zhou, J., Coppens, M. O. (2017). Method for generating pore networks in porous particles of arbitrary shape, and its application to catalytic hydrogenation of benzene. Chemical Engineering Journal, 329, 56–65.
- [29] Sherrington, D. C. (1998). Preparation, structure and morphology of polymer supports. Chemical Communications, 2275–2286.
- [30] Shaipulizan, N. S., Jamil, S. N. A. M., Kamaruzaman, S., Subri, N. N. S., Adeyi, A. A., Abdullah, A. H., & Abdullah, L.C. (2020). Preparation of Ethylene Glycol Dimethacrylate (EGDMA)-Based Terpolymer as Potential Sorbents for Pharmaceuticals Adsorption. Polymers, 12, 423.
- [31] Dobrzynska-Mizera, M., Knitter, M., Mallardo, S., Del Barone, M.C., Santagata, G., & Di Lorenzo, M. L. (2021). Thermal and Thermo-Mechanical Properties of Poly (L-lactic Acid) Biocomposites Containing β- Cyclodextrin/ D-Limonene Inclusion Complex. Materials, 14, 2569.