Bilecik için POTGTG Santralinin Potansiyel Değerlendirilmesi

Bu çalışmada, Bilecik şartları göz önüne alınarak Organik Rankine Çevrimi (ORC) esasına göre çalışan Parabolik Oluk Tipi Güneş Termal Güç (POTGTG) Santrali tasarımı yapılmıştır. Sistem, Güneş alanı (GA), Termal Enerji Depolama (TED) sistemin ve Güç bloğundan (GB) oluşmaktadır. Güç bloğunda çalışma akışkanı olarak R-141b, güneş alanında Therminol VP-1 ve termal enerji depolama malzemesi olarak Eriyik tuz kullanılmıştır. Santral tasarımında farklı parametreler dikkate alınmıştır buna göre bu tasarımlar termodinamiğin birinci ve ikinci yasasına göre değerlendirilmiş olup sistemden 132 MWh -169 MWh arasında güç üretilebileceği, sistem veriminin %19,36 - %24,73 arasında değiştiği belirlenmiştir. Son olarak sistemin ekonomik analizinde Net Bugünkü Değer (NBD) yöntemi kullanılmıştır. Sistemin faydalı ömrü 20 yıl olarak belirlenmiş olup sistem maliyeti 7.924.241.849,09 TL olarak hesaplanmıştır ve bu sistemin yatırım için uygun olduğu belirlenmiştir.

Potential Assessment of PTTSTP Plant in Bilecik

In this study, Parabolic Trough Type Solar Thermal Power (PTTSTPP) Plant design which in accordance with Organic Rankine Cycle has been done considering Bilecik conditions. The system consists of Solar field (SF), Thermal Energy Storage (TES) and Power Block (PB). R-141b was used as the working fluid in the power block, Therminol VP-1 was used in the solar field and Molten-salt was used as the thermal energy storage material. Different parameters have been taken into consideration in the design of the power plant. These designs were evaluated according to the first and second laws of thermodynamics and it was determined that power could be produced between 132 MWh -169 MWh and the system efficiency ranged between 19.36% - 24.73. In addition, Finally, the Net Present Value (NPV) method was used in the economic analysis of the system. The useful life of the system is determined as 20 years and the cost of the system is calculated as 7.924.241.849.09 TL and it is determined that this system is suitable for investment.

___

  • [1] Khaliq A. (2017), “Energetic and exergetic performance investigation of a solar based integrated system for cogeneration of power and cooling”, Applied Thermal Engineering, 112, 1305-1316. [2] Binamer, A.O. (2019), “Al-Abdaliya integrated solar combined cycle power plant: Case study of Kuwait, part I”, Renewable Energy, 131, 923-937. [3] Poghosyan, V. and Hassan, M.I. (2015), “Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant”, Renewable Energy, 75, 152-164. [4] Luca, F.D., Ferraro, V., Marinelli,V. (2015). “On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts”, Energy, 83, 230-239. [5] Giostri, A., Binotti, M., et al. (2012). “Comparison of different solar plants based on parabolic trough technology”, Solar Energy, 86, 1208–1221. [6] Boukelia,T.E., Mecibah, M.S., Kumar, B.N., Reddy, K.S. (2015). “Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt”, Energy, 88, 292-303. [7] Kumaresan, G., Sridhar, R. and Velraj, R. (2012). “Performance studies of a solar parabolic trough collector with a thermal energy storage system”, Energy, 47, 395-402. [8] Siva Reddy, V., Kaushik, S.C. , Tyagi, S.K. (2012). “Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)”, Energy, 39, 258-273. [9] Cakici, D.M. (2016). “Thermal Modelıng of A Geothermal Powered Organıc Rankıne Cycle Integrated Wıth Parabolıc Trough Solar Collectors”, Master of Science, Izmir, Turkey. [10] Sohal M.S., Ebner, M.A., Sabharwall, P., Sharpe, P. (2010). “Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties”, Idaho National Laboratory. [11] Yuksel, Y.E. (2018). “Thermodynamic assessment of modified Organic Rankine Cycle integrated with parabolic trough collector for hydrogen production”, International Journal of Hydrogen Energy, 43, 5832-5841. [12] Kalogirou, S.A., Solar energy engineering: Process and system. USA: Elsevier. [13] Cengel, Y.A., Boles M.A. (1996), Thermodynamics: An Engineering Approach Translation from 2nd Edition, Translated by: Taner Derbentli, McGraw-Hill- Literature Publishing, İstanbul. [14] Tugcu, A., Arslan, O., Kose, R., Yamankaradeniz, N. (2016).“Thermodynamics and Economical Analysis of Geothermal Assisted Absorption Refrigeration System: Simav Case Study”, Journal of Heat Science and Technique, 36, 1, 143-159.