Aktif Tabakaya Ag Nanopartikül Katkısının Organik Güneş Hücrelerinin Fotovoltaik Verimine Etkisi

Organik güneş hücreleri alternatif enerji kaynaklarından bir tanesidir. Bu teknolojinin ticarileşebilmesinin önündeki tek engel düşük verimlilik değerleridir. Bu çalışmada evrik yapıdaki organik güneş hücrelerinin verimi Ag nanopartiküllerin (np) plazmonik etkilerinden yararlanarak arttırılmıştır. Aygıt konfigürasyonu ITO/ZnO/poli(3-hekziltiofen-2,5-diil) (P3HT): (6,6)-fenil C61 bütirik asit metil ester (PCBM)/MoO3/Ag şeklindedir. Ag np’ler poliol yöntemi ile sentezlenmiş ve X-Işını difraktometresi (XRD) UV-Vis spektrofotometre ve alan emisyonlu taramalı elektron mikroskopu (FESEM) ile karakterize edilmiştir. Daha sonrasında Ag, kütlece %0,125-0,25-0,5 oranlarında P3HT:PCBM’e katkılanmıştır. Referans hücrede verim değeri %3,21 iken %0,25 Ag katkılı aygıtta yaklaşık %7’lik bir verim artışı ile %3,43 değerine ulaşılmıştır. 

The Effect of Ag Nanoparticle Doping to Active Layer on Photovoltaic Efficiency of Organic Solar Cell

Organic solar cells are one of the alternative energy sources. The only barrier to commercialization of this technology is its low efficiency values. In this study, the efficiency of inverted organic solar cells was increased by utilizing the plasmonic effects of Ag nanoparticles (np). The device configuration is ITO/ZnO/poly(3-hexylthiophene-2,5-diyl) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PCBM)/MoO3/Ag. Ag np’s were synthesized by polyol method and characterized by X-Ray diffractometry (XRD), Uv-Vis spectrophotometer and field emission scanning electron microscopy (FESEM). Afterwards, Ag was added to P3HT:PCBM at the ratios of 0.125-0.25-0.5% by mass. While the efficiency value was 3.21% in the reference cell, it reached 3.43% with an increase of approximately 7% in the 0.25% Ag added device.

___

  • Shin, D. Y., Lim, J. R., Shin, W. G., Lee, C. G. & Kang, G. H. (2021). Layup-Only Modulization for Low-Stress Fabrication of a Silicon Solar Module with 100 μm Thin Silicon Solar Cells. Solar Energy Materials and Solar Cells, 221, 110903.
  • Aberle, A. G. (2009). Thin-Film Solar Cells. Thin Solid Films, 517, 4706-4710.
  • Cho, E. J., Cha, J. K., Fu, G., Cho, H. S., Lee, H. W. & Kim, S. H. (2022). Selective Sensitization Strategy for High-Performance Panchromatic Dye-Sensitized Solar Cells Incorporated with Ruthenium-Based Double Dye. Journal of Industrial and Engineering Chemistry, 115, 272–278.
  • Liao, X., Li, Q., Ye, J., Li, Z., Ren, J., Zhang, K., Xu, Y., Cai, Y. P., Liu, S. & Huang, F. (2023). Solid-Liquid Convertible Fluorinated Terthiophene as Additives in Mediating Morphology and Performance of Organic Solar Cells. Chemical Engineering Journal, 453, 139489.
  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of The American Chemical Society Communications, 131, 6050-6051.
  • Raman, R. K., Thangavelu, S. A. G., Venkataraj, S. & Krishnamoorthy, A. (2021) Materials, Methods and Strategies for Encapsulation of Perovskite Solar Cells: From Past to Present. Renewable and Sustainable Energy Reviews, 151, 111608.
  • Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L. & Luo, G. (2015). Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 115 (5), 2136-2173.
  • Fukuda, K., Yu, K.& Someya, T. (2020). The Future of Flexible Organic Solar Cells. Advanced Energy Materials, 2000765, 1-10.
  • Brabec, J. C. & Durrant, R. J. (2008). Solution-Processed Organic Solar Cells. MRS Bulletin, 33, 670-675.
  • Zilberberg, K., Gharbi, H., Behrendt, A., Trost, S. & Riedl, T. (2012). Low-Temperature, Solution Processed MoOx for Efficient and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 4, 1164-1168.
  • Seo, J. H., Um, H. D., Shukla, A., Hwang, I., Park, J., Kang, Y. C., Kim, C. S., Song, M. & Seo, K. (2015). Low Temperature Solution-Processed Flexible Organic Solar Cells with PFN/AgNWs Cathode. Nano Energy, 16, 122-129.
  • Mandoc, M. M., Koster, L. J. & Blom P. W. (2007). Optimum Charge Carrier Mobility in Organic Solar Cells. Applied Physics Letters, 133504 (90), 1-3.
  • Atwater, H. A. & Polman, A. (2010). Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205-213.
  • Stuart, H. R. & Hall, D. G. (1998). Island Size Effects in Nanoparticle-Enhanced Photodedectors. Applied Physics Letters, 73, 3815-3817.
  • Liang, A., Liu, Q., Wen, G. & Jiang, Z. (2012). The Surface-Plasmon-Resonance Effect of Nanogold/Silver and its Analytical Applications. Trends in Analytical Chemistry, 37, 32-47.
  • Fan, X., Zheng, W. & Singh, D. J. (2014). Light Scattering and Surface Plasmons on Small Spherical Particles. Light: Science & Applications, 3, 1-14.
  • Xue, M., Li, L., Villers, B. J. T. D., Shen, H., Zhu, J., Yu, Z., Stieg, A. Z., Pei, Q., Schwartz, B. J. & Wang, K. L. (2011). Charge-Carrier Dynamics in Hybrid Plasmonic Organic Solar Cells with Ag Nanoparticles. Applied Physics Letters, 98 (253302), 1-3.
  • Paci, B., Genorosi, A., Albertini, V. R., Spyropoulos, G. D., Stratakis, E. & Kymakis, E. (2012). Enhancement of Photo/Thermal Stability of Organic Bulk Heterojunction Photovoltaic Devices via Gold Nanoparticles Doping of the Active Layer. Nanoscale, 4, 7453-7459.
  • Huang, Y. F., Zhang, Z. L., Kang, K. B., Zhao, M., Wen, T., Liu Y. X., Zhai, X. P., Lv, S. K., Wang, Q., Qiu, W. Y. & Qiu, D. (2013). Mitigation of Metal-Mediated Losses by Coating Au Nanoparticles with Dielectric Layer in Plasmonic Solar Cells. RSC Advances, 3, 16080-16088.
  • Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K. & Yang, Y. (2005). High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nature Materials, 4, 864-868.
  • Erray, M., Hanine, M. & El Amrani, A. (2020). Study of P-Type Doping Effect on P3HT: ICBA Based Organic Photovoltaic Solar Cell Performance. Optik, 202 (163543), 1-7.
  • Cameron, J. & Skabara, P. J. (2020). The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Materials Horizons, 7, 1759-1772.
  • Li, J., Guo, C., Bai, Yu., Liu, W., Chen, Y, He, J., Li, D., Yang, X., Qiu, Q., Chen, T., Yu, J., Huang, Y. & Yu, J. (2022). One-Step Formation of Low Work-Function, Transparent and Conductive MgFxOy Electron Extraction for Silicon Solar Cells. Advanced Science, 9, 2202400.
  • Liang, Z., Zhang, Q., Wiranwetchayan, O., Xi, J., Yang, Z., Park, K., Li, C. & Cao, G. (2012), Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells. Advanced Functional Materials, 22 (10), 2194-2201.
  • Zhao, T., Sun, R., Yu, S., Zhang, Z., Zhou, L., Huang, H. & Du, R. (2010). Size-Controlled Preparation of Silver Nanoparticles by a Modified Polyol Method. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 366 (1-3), 197-202.
  • Agnihotri, S., Mukherji, S. & Mukherji S. (2014). Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 nm Using the Same Protocol and their Antibacterial Efficacy. RSC Advances, 4, 3974-3983.
  • Sun, Y., Cui, C., Wang, H. & Li, Y. (2011). Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-Hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive. Advanced Energy Materials, 1, 1058-1061.