3-Benzil-4-[3-(3-metoksibenzoksi)-benzilidenamino]-4,5-Dihidro1H-1,2,4-Triazol-5-on'un DFT/HF Temel Setleriyle Yapısal Özelliklerinin, Spektroskopik Yönlerinin, Elektronik ve Termodinamik Özelliklerinin İncelenmesi

Bu makalede, öncelikle 3-benzil-4-[3-(3-metoksibenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5- on(1)'un sentezi, FT-IR, NMR kimyasal kaymaları, UV-Vis spektral değerleri incelenmiştir. Daha sonra, molekül 6-311G(d)/3-21G temel setleriyle B3LYP ve HF yöntemleri kullanılarak optimize edilmiştir. Molekülün, elektronik ve termodinamik parametreleri, geometrik ve yapısal özellikleri, HOMO-LUMO enerji değerleri, moleküler elektrostatik potansiyeli (MEP) ve Mulliken atomik yükleri oluşturulmuştur. Bu molekülün 1HNMR ve 13C-NMR kimyasal kayma değerleri (DMSO çözücüsünde ve temel durumda) GIAO yöntemiyle gerçekleştirilmiştir. Molekülün, geometrik ve spektroskopik parametreleri, 6-311G(d) ve 3-21G temel setleriyle yoğunluk fonksiyoneli (DFT/B3LYP) ve Hartree-Fock (HF) yöntemleri kullanılarak oluşturulmuştur. Ayrıca, FT-IR değerlerinin tayin edilmesinde veda4f yazılım programı kullanılmıştır. UV-vis verileri (etanol ortamında) hesaplanmış ve tüm spektral parametreler deneysel verilerle karşılaştırılmıştır.

Investigations of Structural Properties, Spectroscopic Aspects, Electronic and Thermodynamic Properties of 3- Benzyl-4-[3-(3-methoxybenzoxy)-benzylidenamino]-4,5- Dihydro-1H-1,2,4-Triazol-5-one with DFT/HF Basis Sets

In this paper, firstly the synthesis, FT-IR, NMR chemical shifts, UV–Vis spectral values of 3-benzyl-4-[3-(3-methoxybenzoxy)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one (1) have been investigated.Later, this molecule was optimized by using B3LYP and HF methods with 6-311G(d)/3-21G basis sets.Electronic and thermodynamic parameters, geometric and structural properties, HOMO-LUMO energy values, themolecular electrostatic potential (MEP) and Mulliken atomic charges of titled molecule have been carried out. 1HNMR and 13C-NMR isotropic shift values of this molecule (in DMSO solvent and in the ground state) were performedby GIAO method. The geometric and spectroscopic parameters of titled molecule were performed by using densityfunctional (DFT/B3LYP) and Hartree–Fock methods (HF) with the 6-311G(d) and 3-21G basis sets. Also, thedetermination of FT-IR values was used the veda4f software program. The UV-vis data (ethanol) were calculated andall spectral parameters were compared with experimental data.

___

  • Du, H., Fan, Z., Yang, L. & Bao, X. (2018). Synthesis and Antimicrobial Activities of Novel 1, 2, 4 - Triazole-acyl-hydrazone Derivatives Containing the Quinazolin-4-one Moiety. Chinese Journal of Organic Chemistry, 8(2), 531-538. https://doi.org/10.6023/cjoc201708051
  • Yilmaz, F. & Menteşe, E. (2017). Synthesis and characterisation of some coumarin-1,2,4-triazol-3-thioether hybrid molecules. Journal of Chemical Research, 41(1), 4-6. https://doi.org/10.3184/174751917X14815427219040
  • Madeira, C.L., Speet, S.A., Nieto, C.A., Abrell, L., Chorover, J., Sierra-Alvarez, R., & Field, J.A. (2017). Sequential anaerobic-aerobic biodegradation of emerging insensitivemunitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere, 167, 478–484. https://doi.org/10.1016/j.chemosphere.2016
  • Krzmarzick M.J., Khatiwada, R., Olivares, C.I., Abrell, L., Sierra-Alvarez, R., Chorover, J. & Field, J.A. (2015). Biotransformation and degradation of the insensitivemunitions compound 3-nitro-1,2,4-triazol-5-one, by soil bacterial communities, Environmental Science & Technology, 49, 5681–5688. https://doi.org/10.1021/acs.est.5b00511
  • Özil, M., Balaydın, H.T. & Şentürk M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3- one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE,BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705–713. https://doi.org/10.1016/j.bioorg.2019.02.045
  • Akin, S., Ayaloğlu, H., Gültekin, E., Çolak, A., Bekircan O. & Yildirim Akatin M. (2019). Synthesis of 1,2,4-triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects. Bioorganic Chemistry, 83, 170-179.
  • Paul, A., Anbu, S., Sharma, G., Kuznetsov, M.L., Koch, B., Fatima, M., Da Silva, C.G., Pombeiro A.J.L. (2015). Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes. Dalton Transactions, 44, 19983–19996.
  • Qin, Q.P., Meng, T., Tan, M.X., Liu, Y.C., Luo, X.J., Zou, B.Q., Liang H. (2018). Synthesis, crystal structure and biological evaluation of a new dasatinib copper(II) complex as telomerase inhibitor. European Journal of Medicinal Chemistry, 143, 1597–1603. https://doi.org/10.1016/j.ejmech.2017.10.058
  • Rudrapal, M. & Biplab De, B. (2013). Chemistry and Biological Importance of Heterocyclic Schiff’s Bases. International Research Journal of Pure & Applied Chemistry, 3(3), 232-249.
  • Shiu, K.B., Liu, S.A., & Lee, G.H., (2010). One-pot conditional self-assembly of multicopper metallacycles. Inorganic Chemistry, 49(21), 9902–9908.
  • Madeira, C.L., Field, A. J., Simonich T.M., Tanguay, R. L., Chorover, J. & Sierra-Alvarez, R. (2018). Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). Journal of Hazardous Materials, 343, 340-346. https://doi.org/10.1016/j.jhazmat.2017.09.052
  • Anouar, E.H. (2014). A quantum chemical and statistical study of phenolic schiff bases with antioxidant activity against DPPH free radical. Antioxidants, 3, 309-322.
  • Amić, Z. Marković, J.M. Dimitrić Marković, V. Stepanić, B. Lučić, D. (2014). Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms. Food Chemistry, 152, 578-585.
  • Lin Lim, F.C.P., Hua, L.M., Tiekink, E.R.T. & Dolzhenko, A.V. (2018). One-pot, microwave-assisted synthesis of polymethylene-bridged bis (1H-1,2,4-triazol-5(3)-amines) and their tautomerism. Tetrahedron Letters, 59, 3792–3796. https://doi.org/10.1016/j.tetlet.2018.09.018
  • Mohameda, N.G., Shehaa, M. M., Hassana, H.Y.,. Abdel-Hafezb, L.J.M. & Omarc, F.A. (2018). Synthesis, antimicrobial activity and molecular modeling study of 3-(5-amino-(2H)-1,2,4-triazol-3-yl]-naphthyridinones as potential DNA-gyrase inhibitors. Bioorganic Chemistry, 81, 599–611. https://doi.org/10.1016/j.bioorg.2018.08.031
  • Hu, T.P., Li, M.M., Ya-Ru Huang, Y.R., Gao, L.L., Wang, X.Q., Gao, J.F. & Niu X.Y., (2018). Fluorescent and magnetic properties of three complexes basedon 4,4’-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid). Polyhedron, 151, 306–312. https://doi.org/10.1016/j.poly.2018.05.019
  • Somagond, S.M., Kamble, R.R., Shaikh, S.K.J., Kumar, S.M., Dasappa, J.P., Byrappa, K., Bayannavar, P.K., Chougala L.S. & Kadadevarmath, J.S. (2018). ( E )-N’-(4-nitrobenzylidene)-2-(1-(4-methoxyphenyl)-5-oxo-1H -1,2,4-triazol-4(5H)-yl)acetohydrazide: Synthesis, crystal structure, DFT andHirshfeld surface analysis. Chemical Data Collections, 13–14, 126–138. https://doi.org/10.1016/j.cdc.2018.02.001
  • Çetin, A., Korkmaz, A. & Kaya, E. (2018). Synthesis, characterization and optical studies of conjugated Schiff base polymer containing thieno[3,2-b]thiophene and 1,2,4-triazole groups. Optical Materials, 76, 75-80. https://doi.org/10.1016/j.optmat.2017.12.022
  • Süleymanoğlu, N., Ünver, Y., Ustabaş, R., Direkel, S. & Alpaslan G. (2017). Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives. Journal of Molecular Structure, 1144, 80-86. https://doi.org/10.1016/j.molstruc.2017.05.017
  • Kattimani, P.P., Kamble, R.R., Atukuri, D., Hunnur, R.K., Kamble, A .A. & Devarajegowda, H.C., (2017). C5-Alkyl-1,3,4-oxadiazol-2-ones undergo Dealkylation upon Nitrogen Insertion to form 2H-1,2,4-Triazol-3-ones: synthesis of 1,2,4-triazol-3-one hybrids with riazolothiadiazoles and triazolothiadiazines. Journal of Heterocyclic Chemistry, 54, 2258–2265. https://doi.org/10.1002/jhet.2813
  • Gökçe, H., Öztürk, N., Ceylan, Ü., Alpaslan, Y.B. & Alpaslan G. (2016). Thiol–thione tautomeric analysis, spectroscopic (FT-IR, Laser Raman, NMR and UV–vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 163, 170–180. https://doi.org/10.1016/j.saa.2016.03.041
  • Solima, S.M., Hagar, M., Ibid, F. & El Ashry, E.H. (2015). Experimental and theoretical spectroscopic studies, HOMO–LUMO, NBO analyses and thione–thioltautomerism of a new hybrid of 1,3,4-oxadiazole-thione with quinazolin-4-one. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 270–279. https://doi.org/10.1016/j.saa.2015.01.061
  • Arslan, N.B. & Özdemir, N. (2015). Direct and solvent-assisted keto-enol tautomerism and hydrogen-bonding interactions in 4-(m-chlorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one: a quantum-chemical study. Journal of Molecular Modeling, 2015 21(1), 19. https://doi.org/10.1007/s00894-015-2574-8
  • Mohamed, T.A., Soliman, U.A., Shaaban, I.A., Zoghaib, W.M. & Wilson, L.D. (2015). Raman, infrared and NMR spectral analysis, normal coordinate analysis and theoretical calculations of 5-(methylthio)-1,3,4-thiadiazole-2(3H)- thione and its thiol tautomer, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 150 339–349.
  • Boursas, F., Berrah, F., Kanagathara, N., Anbalagan, G. & Bouacida, S. (2019). XRD, FT-IR, FT-Raman spectra and ab initio HF vibrational analysis of bis (5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) selenate dihydrate. Journal of Molecular Structure, 1180, 532-541. https://doi.org/10.1016/j.molstruc.2018.12.037
  • Medetalibeyoğlu, H., (2015). Bazı yeni 4-[3-(3-metoksibenzoksi)-benzilidenamino]-4,5dihidro-1H-1,2,4-triazol-5-on türevlerinin sentezi, deneysel ve teorik özelliklerinin incelenmesi. Doktora Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Kars.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Foresman Farkas, J.B., Ortiz, J.V., Cioslowski, J. & Fox, D.J. (2010).Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT,
  • Keith, T. & Millam, J. (2009). GaussView, Version 5, R Dennington, Semichem Inc, Shawnee Mission, KS.
  • Wolinski, K., Hinton, J.F. & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251-8260.
  • Jamróz M.H. (2004). Vibrational Energy Distribution Analysis: VEDA 4 program. Warsaw.
  • VlčekJr, A. & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251 258–287. https://doi.org/10.1016/j.ccr.2006.05.02
  • Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Vázquez-López, E.M. & Erdönmez, A. (2003). 1-Acetyl-3-(p-chlorobenzyl)-4-(p-chlorobenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one. Acta Crystallographica Section E, 59(6), 750-752.
  • Çoruh, U., Kahveci, B., Şaşmaz, S. & Kim, Y. (2003). 1-Acetyl-4-(p-chlorobenzylideneamino)-3-methyl-4,5-dihydro-1H-1,2,4-triazol-5-one. Acta Crystallographica Section E, 59(4), 530-532
  • Mulliken, R.S. (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. The Journal of Chemical Physics, 23 1833–1840. https://doi.org/10.1063/1.1740588
  • Silverstein, R.M. Webster, F.X. (1998). Spectroscopic Identification of Organic Compound, sixth ed., John Willey & Sons, New York.
  • Pihlaja, K., Kleinpeter (Eds.), E. (1994). Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers, Deerfield Beach.
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science 218, 747-754.
  • Pearson R.G. (1986). Absolute electronegativity, hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences of the United State of America, 83, 8440-8441.
  • Öztürk, N. Alpaslan, Y.B. Alpaslan, G., Alaşalvar, C. & Gökçe, H. (2018). Structural, Spectroscopic (FT-IR, Raman and NMR), Non-linear Optical (NLO), HOMO-LUMO and Theoretical (DFT/CAM-B3LYP) Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 107-120. http://dx.doi.org/10.19113/sdufbed.01322