Hasarlı Helis Dişli Çarkın Nümerik Analizi

Günümüzde, kara, deniz ve hava araçlarındaki mekanik gücü iletmek için dişli çarklar kullanılmaktadır. Makinelerde kullanılan bu dişli çarklarda bazen hasar meydana gelebilmektedir. Bu hasarların önlenmesi amacıyla gelişen teknolojiyle birlikte nümerik programların kullanımı ve önemi de artmaktadır. Oluşabilecek hasarlar önceden bu programlar aracılığıyla belirlenebilmektedir. Böylece uygun maliyetli analizlerle malzeme seçimi yapılabilmektedir. Bu çalışmada, araba motorlarında sıklıkla kullanılan hasarlı bir helis dişli nümerik olarak analiz edilmiştir. Çalışmada, hasarlı helisel dişli önce Solidworks programı yardımıyla modellenmiş, ardından ANSYS Workbench Finite Elements Paketi programı ile statik gerilme analizi yapılmıştır. Analizde yapısal çelikten yapılmış helis dişlinin özellikleri kullanılmıştır. Çalışma sonucunda emniyet gerilme sınırının aşılması nedeniyle helis dişlinin kırıldığı tespit edilmiştir.

Numerical Analysis of Damaged Helical Gear Wheel

In the present day, gear wheels are used to transmit mechanical power in land, sea and air vehicles. Damages can sometimes occur in these gear wheels used in machines. In order to prevent these damages, the use and importance of numerical programs increase with the developing technology. Damages that may occur can be determined in advance through these programs. Thus, material selection can be made with cost-effective analysis. In this study, a damaged helical gear, which is frequently used in car engines, was analyzed numerically. In the study, the damaged helical gear was first modeled with the help of Solidworks program and then static stress analysis was performed with the ANSYS Workbench Finite Elements Package program. In the analysis, the properties of the helical gear made of structural steel were used. As a result of the study, it was determined that the helical gear was broken due to exceeding the safety stress limit.

___

  • Alban, L. E. (1985). Systematic analysis of gear failures. ASM International.
  • Ansys. (2021). Ansys 2021 R1 Academic Software. Ansys Inc.
  • Asi, O. (2006). Fatigue failure of a helical gear in a gearbox. Engineering failure analysis, 13(7): 1116-1125.
  • Basan, R., Franulović, M., Lengauer, M., & Križan, B. (2010). Rolling-sliding-contact fatigue damage of the gear tooth flanks. Engineering Review, 30(2): 37-46.
  • Chalabi, I. (2020). Comparative Service Life Analysis for Gears According to Different Failure Criteria. Journal of Failure Analysis and Prevention, 20(6): 2137-2144.
  • Chen, Y.-C., & Tsay, C.-B. (2002). Stress analysis of a helical gear set with localized bearing contact. Finite Elements in Analysis and Design, 38(8): 707-723.
  • Çaydaş, U., & Seçgin, Ö. (2003). Investigation of the Effects of Axis Angle on Bearing Forces in Spur Gear Wheel Systems. Journal of Eastern Anatolia Region Studies, 2(1): 61-65.
  • Flodin, A., & Andersson, S. (2000). Simulation of mild wear in helical gears. Wear, 241(2): 123-128.
  • Hwang, S.-C., Lee, J.-H., Lee, D.-H., Han, S.-H., & Lee, K.-H. (2013). Contact stress analysis for a pair of mating gears. Mathematical and Computer Modelling, 57(1-2): 40-49.
  • Karpat, F., Çavdar, K., & Babalık, F. C. (2002). Sizing and analysis of spur, helical, conical and worm gear mechanisms by computer. Engineer and Mechanical Magazine, 43(510): 26-32.
  • Khurmi, R., & Gupta, J. (2005). Machine Design Eurasia Publishing House. Ram Nagar, New Delhi.
  • Kramberger, J., Šraml, M., Glodež, S., Flašker, J., & Potrč, I. (2004). Computational model for the analysis of bending fatigue in gears. Computers & structures, 82(23-26): 2261-2269.
  • Lee, H.-H. (2020). Finite Element Simulations with ANSYS Workbench 2020. SDC Publications.
  • Li, W., Zhai, P., Tian, J., & Luo, B. (2018). Thermal analysis of helical gear transmission system considering machining and installation error. International journal of mechanical sciences, 149: 1-17.
  • Lin, T., & He, Z. (2017). Analytical method for coupled transmission error of helical gear system with machining errors, assembly errors and tooth modifications. Mechanical Systems and Signal Processing, 91: 167-182.
  • Lisle, T. J., Shaw, B. A., & Frazer, R. C. (2017). External spur gear root bending stress: a comparison of ISO 6336: 2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques. Mechanism and Machine Theory, 111: 1-9.
  • Mohanraj, R., Elangovan, S., Prakash, R. A., Sanjeev, S., Swetha, R., & Agalya, K. (2020). Stress Analysis on Single and Herringbone Helical Gears. Materials Today: Proceedings, 22: 2049-2057.
  • Netpu, S., & Srichandr, P. (2010). Failure analysis of a helical gear. The First TSME International Conference on Mechanical Engineering, 20-22.
  • Nisbett, K. J., & Budynas, R. G. (2014). Shigley's Mechanical Engineering Design (10th ed.). McGraw-Hill Series in Mechanical Engineering.
  • Patil, S. S., Karuppanan, S., Atanasovska, I., & Wahab, A. A. (2014). Contact stress analysis of helical gear pairs, including frictional coefficients. International journal of mechanical sciences, 85: 205-211.
  • Peng, Y., Zhao, N., Zhang, M., Li, W., & Zhou, R. (2018). Non-Newtonian thermal elastohydrodynamic simulation of helical gears considering modification and misalignment. Tribology International, 124: 46-60.
  • Rao, C. R. M., & Muthuveerappan, G. (1993). Finite element modelling and stress analysis of helical gear teeth. Computers & structures, 49(6): 1095-1106.
  • Solidworks. (2021). Solidworks Software, Dassault Systèmes, France. 3DExperience.
  • Vasić, M. P., Stojanović, B., & Blagojević, M. (2020). Fault Analysis of Gearboxes in Open Pit Mine. Applied Engineering Letters, 5(2): 50-61.
  • Wei, J., Gao, P., Hu, X., Sun, W., & Zeng, J. (2014). Effects of dynamic transmission errors and vibration stability in helical gears. Journal of mechanical science and technology, 28(6): 2253-2262.
  • Wilcox, L., & Coleman, W. (1973). Application of finite elements to the analysis of gear tooth stresses. ASME, 95(4): 1139-1148.