Al2O3-Su Nanoakışkanı İle Isı Transferinin İyileştirilmesi

Son yıllarda malzeme bilimindeki gelişmeler sonucunda ısı transferinin iyileştirilmesinde yüz yıllardır uygulanan akışkan içerisine milimetre veya mikrometre boyutlarındaki katı partiküllerin süspanse edilmesi yöntemi yeni bir boyut kazanmıştır. 100 nm’ nin altında parçacıklar elde edilerek bu parçacıklar, geleneksel olarak endüstriyel sistemlerde ısı transfer akışkanı olarak kullanılan su, sentetik yağ (motor yağı), etilen glikol gibi temel akışkanlarla belirli oranlarda karıştırılarak yeni akışkanlar elde edilmeye başlanmıştır.  Bu çalışmada % 0.2, % 0.4 ve % 0.8 hacimsel oranlarında Al2O3 nanopartikülleri saf suyun içerisine katılarak nanoakışkanlar hazırlanmış ve hazırlanan nanoakışkanların termofiziksel özellikleri (ısıl iletkenlik, viskozite gibi) belirlenmiştir. Sonuçlar literatürdeki mevcut modellerle karşılaştırılmıştır.

___

  • Chang, H., Tsung, T. T., Chen, L. C., Yang, Y. C., Lin, H. M., Lin, C. K., Jwo, C. S., 2005. Nanoparticle Suspension Preparation Using the Arc Spray Nanoparticle Synthesis System Combined with Ultrasonic Vibration and Rotating Electrode, The International Journal of Advanced Manufacturing Technology, 26, 552–558.
  • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 99–105.
  • Choi, S.U.S., Zhang, Z. G, Yu, W., Lockwood, F. E., Grulke, E.A., 2001. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Applied Physics Letters, 79 (14), 2252- 2254.
  • Choi, S.U.S., Zhang, Z.G., Yu F.E. 2001. Lockwood and E.A. Grulke, Anomalously Thermal Conductivity Enhancement Nanotube suspensions, Applied Physics Letters, 79, 2252-2254.
  • Dilek, E. F., 2008. Nanoakışkanların Hazırlanması ve Isıl İletkenliklerinin Belirlenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu,W., Thompson, L. J., 2001. Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters, 78, 718–720.
  • Gürmen, S. Ebin, B., 2008. Nanopartiküller ve Üretim Yöntemleri-1, Metalurji Dergisi, 150, 31-38.
  • Xu J.F., Zhang J.R., Du Y.W., 1996, Ultrasonic velocity and attenuation in nano- structured Zn materials, Mater Lett; 29, 131–4.
  • Liu , M., Lin , M., Huang , I., Wang, C., 2005. Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, 32, 1202–1210.
  • Lo, C.-H., Tsung, T.-T., Chen, L.-C., Su, C.-H., Lin, H.-M., 2005. Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Nanoparticle Research, 7, 313–320.
  • Lo, C.-H., Tsung, T.-T., and Chen, L.-C., 2005. Shaped-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS), Journal of Crystal Growth, 277, 636–642.
  • Mishra P. C., Mukherjee S., Nayak S. K., Panda A., 2014. A brief review on viscosity of nanofluids, Int Nano Lett, 4, 109–120.
  • Verma P., Chaturvedi P., Rawat J.S.B.S., 2007. Elimination of currentnon-uniformity in carbon nanotube field emitters, J Mater Sci: Mater Electron, 18, 677–80.
  • Wen, D., Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 5181–5188.
  • Zhu, H., Lin, Y., Yin, Y., 2004. A novel one-step chemical method for preparation of copper nanofluids, Journal of Colloid and Interface Science, 277, 100–103.
Batman Üniversitesi Yaşam Bilimleri Dergisi-Cover
  • ISSN: 2147-4877
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Batman Üniversitesi