Boru Akışında Aşırı Pürüzlülüğünün Güç Tüketimine Etkisi

Bu çalışmada, artan boru yüzey pürüzlülüğünün pompa güç tüketimine etkisi borulu su akışları için araştırıldı. Akışkan dağıtım sistemlerinde, akış duvarına yapışan kirlilikler veya zamanla oluşan korozyon akış yüzyinin daha pürüzlü olmasına neden olur ve bu da akışa karşı daha fazla sürtünme direnci oluşturur. Burada, alüminyum, bakır, çelik ve galvanizli borulu su akışıyla deneysel bir çalışma gerçekleştirilmiştir. Bu borular çalışmakta olan eskimiş akışkan dağıtım sistemlerinden doğrudan sökülen borulardır. Bu boruların pürüzlülük yükseklikleri deneysel yöntemle ölçüldü ve bulunan pürüzlülük yükseklikleri yeni imal boruların pürüzlülük değerleri ile karşılaştırıldı. Karşılaştırmada aşırı yüzey pürüzlülüğün oluştuğu görüldü. Aşırı pürüzlülük nedeniyle oluşan enerji tüketimi 15000 < Re < 150000 arası Reynolds sayılarında tam gelişmiş türbülanslı yatay boru akışları için gerçekleştirildi. Hesaplamalar artan duvar pürüzlülüğün pompa güç tüketimini ve fatura maliyetini, özellikle yüksek Reynolds sayılarında Re < 105,  artırdığı tespit edilmiştir.

Impact of Excess Roughness on Power Consumption in Pipe Flows

In this study, the effect of excess surface roughness on pump power consumption was investigated for water pipe flows. In fluid distribution systems, the impurities adhering to flow wall or the wall corrosion cause the flow surface being more roughly and as a consequent cause to more frictional drag. Here, an experimental study was carried out with water flows inside aluminium, copper, steel and galvanized pipes which are detached directly from the aging fluid distribution assemblings. Roughness heights of these dated pipes was measured by experimental way. The measured roughness heights were compared with new manufacture values, the dated pipes  was found more roughly. An energy consumption analysis was carried out for one meter of pipe flow for the Reynolds number between 15000 < Re < 150000. Determinations showed that the friction existed due to excess surface roughness caused the pump power consumption to increase and cost also, especially at high Reynolds number about Re > 105.

___

  • Cabrera, E., Pardo, M.A., Cobacho, R., Cabrera, E.J. (2010). Energy audit of water networks. Journal of Water Resource Planning and Manangement, 136:6:669-677
  • Bagarello, V., Ferro, V., Provenzano, G., Pumo, D.(1995). Experimental study on flow-resistance law for small diameter plastic pipes. Journal of Irrigation and Drainage Engineering, 121 (5), 313–316.
  • Bernuth, R.D. and Wilson, T. (1989). Friction factors for small diameter plastic pipes. Journal of Hydraulic Engineering, 115 (2), 183–192.
  • Boulos, P.F.& Bros, C. (2010). Assessing the carbon footprint of water supply and distribution systems. Journal AWWA, 102:11:47-54
  • Çengel Y.A. & Cimbala J.M. (2006). Fluid Mechanics Fundamentals & Applications. McGraw-Hill
  • Filion, Y.R. & Karney, B.W. (2003). Sources of error in network modeling: a question of perspective, Journal AWWA, 95:2:119-130
  • Franzini, J.B. and Finnemore, E.J. (1997). Fluid mechanics with engineering applications. int. ed New York: McGraw-Hill.
  • Diogo A.F.& Vilela F.A. (2014). Head losses and friction factors of steady turbulent flows in plastic pipes, Urban Water Journal, 11:5, 414-425,
  • Haaland, S.E. (1983). Simple and explicit formulas for the friction factor in turbulent pipe flow. Journal of Fluid Engineering, 105 (3), 89–90.
  • Hernadez, E., Pardo, M., Cabrera, E., Cobacho, R. (2011). Energy Assessment of Water Networks: A case stude. Water Distribution Systems Analysis, 2010:pp.1168-1179
  • Holman J.P.(1989). Experimental Methods for Engineers, 5th edition Mc-Graw Hill Company, NewYork
  • Quintela, A.C. (2000). Hidraulica. 7th ed. Lisboa, Portugal: Fundaçao Calouste Gulbenkian.
  • Lamont, P.A. (1981). Common pipe flow formulas compared with the theory of roughness. Journal AWWA, 73:5: 274-280.
  • Lamont, P.A. (1954). A review of pipe-friction data and formulae with a proposed set of exponential formulae based on the theory of roughness. Proceedings of the Institution of Civil Engineers, Part III, 3 (2), 248–275.
  • Moody, L.F. (1944). Friction Factors for Pipe Flows. Transactions of the ASME, 66 pp. 671–684.
  • Nikuradse J. (1932). Gestzmassigkeiten der turbuleten stromung in glatten rohren, Forschung auf dem
  • Novais-Barbosa, J. (1986). Mecanica dos Fluidos e Hidraulica Geral. vol. 2. Porto, Portugal: Porto Editora.Gebiet des Ingenieurwesens. Translated in NASA TT F-10, 359, 1966, 3, 1932, 1-36
  • Özışık M.N. (1985). Heat Transfer A Basic Approach, New York: McGraw-Hill
  • Prosser, M., Speight, V., Filion, Y. (2013). Performance and pipe-age based replacement scheduling: comparison using life-cycle energy analysis. Journal AWWA, submitted.
  • Reynolds O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct of sinuous and the law of resistance in parallel channels. Phill. Trans. R.Soc. Lond. A 174, 935–982.
  • Romeu, E., Royo, C. and Monzo´n, A. (2002). Improved explicit equations for estimation of the friction factor in rough and smooth pipes. Chemical Engineering Journal, 86, 369–374.
  • Speight, V.L. (2013). Impact of pipe roughness on pumping energy in complex distribution systems, 12th International Conference on Computing and Control for the Water Industry, Procedia Engineering 70, 1575-1581 Walski, T.M. (1984). Analysis of Water Distribution Systems. Van Nostrand Reinhold Company, Inc, New York
  • Walski, T.M. (1993). Tips for saving energy. Van Nostrand Reinhold Company, Inc, New York
Batman Üniversitesi Yaşam Bilimleri Dergisi-Cover
  • ISSN: 2147-4877
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Batman Üniversitesi