SYNTHESIS AND POTENTIAL ENERGY APPLICATION OF MIL-140A AS A FILLER IN PVA MEMBRANE

SYNTHESIS AND POTENTIAL ENERGY APPLICATION OF MIL-140A AS A FILLER IN PVA MEMBRANE

Ion exchange membranes are used in many areas from fuel cells to redox batteries, from electrolysis to catalytic membrane applications. The high ion variation capacity of these membranes, their stability in aqueous environments, and the most importantly their low prices, increase their usability. The most important component of energy applications, especially batteries, is electrolyte membranes. In this study, MIL-140A type metal organic framework was synthesized and added to the PVA (an inexpensive engineering polymer) membrane at a ratio of 1-4%. This membrane was synthesized for the first time in the literature. The usability of the membrane in batteries or fuel cells was determined by means of swelling test, water uptake capacity, ion exchange capacity and proton conductivity tests. As the MIL-140A ratio increased in the PVA matrix the stability of the membrane and the proton conductivity increased significantly. When the MIL-140A ratio increased from 0% to 3%, the dimensional swelling decreased from 145 % to 24 %, and the proton conductivity increased from 0.0011 S/cm to 0.00286 S/cm.

___

  • 1. Kim, D. J., Jo, M. J., Nam, S.Y.(2015). A review of polymer– nanocomposite electrolyte membranes for fuel cell application. Journal of Industrial and Engineering Chemistry, 21, 36–52.
  • 2. Li, B., Liu, J., Nie, Z., Wang, W., Reed, D., Liu, J., McGrail, P., and Sprenkle, V. (2016). Metal–Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries, Nano Lett. 16, 4335–4340.
  • 3. Liang W., D’Alessandro, D. M. (2013). Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chem. Commun., 49, 3706.
  • 4. Liu, Q., Li, Z., Wang, D., Li, Z., Peng, X., Liu, C., Zheng, P. (2020). Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells, Front Chem. 8: 694.
  • 5. Morozana, A., Jaouen, F. (2012). Metal organic frameworks for electrochemical applications. Energy Environ. Sci.,5, 9269-9290.
  • 6. Patel, H. A., N.,Mansor, S., Gadipelli, Dan J. L. Bretand Zhengxiao Guo. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Appl. Mater. Interfaces, 45, 30687–30691.
  • 7. Prakash, M., Jobic, H. Ramsahye, N., Nouar, F., Damasceno Borges, D., Serre, C., Maurin, G.(2015) Diffusion of H2, CO2, and Their Mixtures in the Porous Zirconium Based Metal–Organic Framework MIL-140A(Zr): Combination of Quasi-Elastic Neutron Scattering Measurements and Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 119(42), DOI:10.1021/acs.jpcc.5b07253
  • 8. Sahin A. (2018). The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells. Electrochimica Acta, 271, 127-136.
  • 9. Smitha, B., Sridhar S., Khan, A. A. (2005). Proton Conducting Composite Membranes from Polysulfone and Heteropolyacid for Fuel Cell Applications. J Polym Sci Part B: Polym Phys 43, 1538–1547.
  • 10. Soares, V., C., Damasceno Borges, D., Wiersum, A., Martineau, C., Nouar, F., Llewellyn, P. L., Ramsahye, N. A., Serre, C., Maurin, G., Leitão A. A. (2016). Adsorption of Small Molecules in the Porous Zirconium-Based Metal Organic Framework MIL-140A (Zr): A Joint Computational-Experimental Approach. J. Phys. Chem. C 120(13), 7192–7200.
  • 11. Sui, X., Ding, H., Leong, Z. Y. C. F., Goh, K., Lia, W., Yang, N., M.D’Alessandro, D., Chen, Y. (2019). The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 148, 277-289.
  • 12. Trindade, L., Borba K.M.N., Zanchet, L., D. W. Lima, A. B. Trench, Fernando Rey, Diaz, U., Longo, E., Bernardo-Gusmão K., Martini, E.M.A (2019). SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid.Materials Chemistry and Physics, 236, 121792, https://doi.org/10.1016/j.matchemphys.2019.121792.
  • 13. Voorde, B. V., Hezinová, M., Lannoeye, J., Vandekerkhove, A., Marszalek, B., Gil, B., Beurroies, I., Petr N. Dirk De Vos. (2015). Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation. Phys. Chem. Chem. Phys., 17, 10759-10766.
  • 14. Wang, 1. Y. Chen, K. S., Mishler, J. Cho, S. C. Adroher X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88, 981–1007.
  • 15. Wong, C. Y., Wong, W. Y., Loh, K. S., Daud, W. R. W., Lim, K. L. Khalid, M., Walvekar, R. (2020). Development of Poly(Vinyl Alcohol)-Based Polymers as Proton Exchange Membranes and Challenges in Fuel Cell Application: A Review, Polymer Reviews, 60:1, 171-202.
  • 16. Yahaya, N.Z.S., Paiman, S. H., Abdullah, N., Mahpoz, N. M., Raffi, A. A., Rahman, M. A., Abas, K. H., Aziz, A. A., Othman, M. H. D., Jaafar, J. (2020). Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination, Journal of the Australian Ceramic Society, 56, 291–300.
  • 17. Zhiwei, W., Hao, Z., Qiang, C. (2019). Preparation and characterization of PVA proton exchange membranes containing phosphonic acid groups for direct methanol fuel cell applications. J Polym Res., 26, 200 https://doi.org/10.1007/s10965-019-1855-9