PV/T SİSTEMİNDE CAM KAPAK ÖZELLİKLERİNİN ELEKTRİKSEL VE TERMAL VERİME ETKİLERİNİN ARAŞTIRILMASI

Günümüzde enerji ihtiyacımız giderek artmaktadır ve enerji üretimi için birçok sistem geliştirilmiştir. Çevreyi korumak adına temiz ve yenilenebilir enerji giderek önem kazanmıştır. Bu sistemlerden en çok kullanılanı güneş enerjisinden elektrik enerjisi üretmemizi sağlayan fotovoltaik (PV) sistemleridir. PV sistemleri zamanla gelişerek, elektrik üretiminin yanında sistemde oluşan termal enerjiyi bir ya da daha fazla akışkana aktararak aynı sistemden hem elektrik hem de termal kazanım elde etmeye yarayan, PV/T sistemleri geliştirilmiştir.Bu çalışmada hava ve su bazlı bir PV/T sisteminde güneş ışığını karşılayan ilk parçası olan cam kapak özelliklerinin elektrik üretimini nasıl etkilediği araştırılmıştır. Deney düzeneği Konya şehrinde kurulmuş ve benzer açık hava koşullarında karşılaştırmalar yapılmıştır.

A RESEARCH ON THE EFFECTS OF GLASS COVER PROPERTIES ON ELECTRICAL AND THERMAL EFFICIENCY IN PV/T SYSTEM

Our energy needs are increasing day by day and many systems have been developed for energy production. Clean and renewable energy has become increasingly important to protect the environment. The most used of these systems are photovoltaic (PV) systems that enable us to generate electrical energy from solar energy. PV systems have been developed over time, and besides electricity production, PV/T systems have been developed to transfer both the thermal energy generated in the system to one or more fluids and to obtain both electricity and thermal gain from the same system. In Turkey, we have a great potential of solar power. And our aim is using this clean energy and made it more efficient. In this study, it has been researched how the glass cover properties, which are the first part of the PV/T system that meet the sunlight, affect electricity production and thermal gain. The experimental setup was established in Konya city in Turkey and comparisons were made under similar open air conditions. There were three types of glasses been examined. First glass has four mm of thickness and it is not coated. Second experiment glass was called low-e glass, it was also has four mm thickness and it has a low-e coating. Third glass was a air hollowed double glass which mean is two glasses combined with a twelve mm air hollow. These two glasses both have four mm thickness. We were expecting decrease in electrical gain but increase on thermal gain. The glasses were mounted and demounted on this order and several experiments were been made. For the study’s results section, three days with the most similar weather conditions -in terms of wind, outdoor weather temperature- were selected and comparisions on electricity production and thermal gains made for each days. This system can be used in hotels, dormitories and such. 

___

  • 1. Atmaca M. & Pektemir İ.Z. (2018). Investigation of possibilities obtain heating, hot water and electricity from same solar panel by means of a new design called “Solenam” (Solar energy absorber machine), 3th International Multidisciplinary Congress, Kiev 5-6 October 2018.
  • 2. Atmaca M. & Pektemir İ.Z. (2020). PV Panelinin Altına Serbest Olarak Yerleştirilen Siyah Emici Plakanın Termal Kapasitesinin Belirlenmesi, International Journal of Advances in Engineering and Pure Sciences, vol.31, pp.280-285.
  • 3. Atmaca M. & Pektemir İ.Z. (2020). PV Panelinin Altına Serbest Olarak Yerleştirilen Siyah Emici Plakanın Termal Kapasitesinin Belirlenmesi, International Journal of Advances in Engineering and Pure Sciences, vol.31, pp.280-285.
  • 4. Chaar L.E., Lamont L.A. & Zein L. (2011). Review of photovoltaic technology, Renew. Sustainable Energy Rev. 15 2165–2175.
  • 5. Gürtürk M., Benli H. & Koçdemir Ertürk N. (2011). Determination of the effects of temperature changes on solar glass used in photovoltaic modules, Elsevier, Renewable Energy 145, 711-724.
  • 6. G. Hutchins M., Olive F. & Anderson C. (2000). Angular-Dependent Optical Properties of Low-e and solar Control Windows – Simulations versus Measurements, Solar Energy Vol. 69, Nos. 1-6, pp. 15-26.
  • 7. Hasan M.A. & Sumathy K. (2010). Photovoltaic thermal module concepts and their performance analysis: a review, Renew. Sustainable Energy Rev. 14, 1845–1859.
  • 8. Kabul A. & Duran F. (2014). Isparta İlinde Fotovoltaik/ Termal ( PV/T) Hibrit Sistemin Performans Analizi, SDU International Technologic Science, 6,1,31-33.
  • 9. URL-1 (2019). - http://www.yegm.gov.tr/MyCalculator/Default.aspx
  • 10. URL-2 (2019). Trakya Cam Sanayii A.Ş. Şişecam Genel Merkezi, Isıcam Sistemleri Broşürü, 18 Mayıs 2017, www.isicam.com.tr
  • 11. Tyagi V., Kaushik S. & Tyagi S. (2012). Advancement in Solar Photovoltaic/ Thermal (PV/T) Hybrid Collector Technology, Renewable and Sustinable Energy Reviews, 16,3, 1383-1398.
  • 12. Xondag H.A. (2008). Flat-plate PV-thermal collectors and systems: a review, Renew. Sustainable Energy Rev. 12, 891–959.