CHARACTERIZATION OF CHEESTNUT SHELL

CHARACTERIZATION OF CHEESTNUT SHELL

The outer brownish shell (pericarp) that remained after the cottony structure was removed inside the sweet chestnut (Castanea sativa Mill.) fruit shell was characterized chemically and morphology. The study was focused on two ways; first is gravimetric analyses to determine main chemical composition of chesnut shell such as holocellulose, α-cellulose, and klason lignin and the second way was analytical analyses to identify the extractive composition and the amount. Main lignocellulosic compounds were determined as 45.3% holocellulose, 29.2% α-cellulose, 42.5% klason lignin. Extractive content was also 3.2%. Analytical results showed that MeOH:Water (95:5 v/v) extract contained 23.8% fructose, 16% glucitol, and 11.2% glucose. Gallic acid was found only 5% in the acetone: water extract. The fiber length, fiber width, lumen width, and fiber wall thickness of the samples were measured as 1.52 mm, 21.67 µm, 14.25 µm, and 3.71 µm, respectively. Chestnut shells, which are morphologically similar to hardwood fibers and contain a high amount of klason lignin, have significant potential for use as raw materials in different industries.

___

  • 1. Alkan Ç. (2004). Investigation of micrographic properties of important hardwood and softwood species of Turkey. M.Sc. Thesis, Zonguldak Karaelmas University, Department of Forest Industry Engineering Zonguldak, 110 p.
  • 2. Altunışık Bülbül G. & Gençer A. (2021). Determination of some chemical and morphological properties of avocado wood and researching its suitability for pulp production. Journal of Bartin Faculty of Forestry, 23, 95-103.
  • 3. Avanzato D. (2009). Following chestnut footprints (Castanea spp.): Cultivation and culture, folkrore and history, traditions and uses. International Society for Horticultural Science (ISHS).
  • 4. Boran Torun S., Pesman E. & Cavdar Donmez A. (2019). Effect of alkali treatment on composites made from recycled polyethylene and chestnut cupula. Polymer Composites, 40, 4442-4451.
  • 5. Barros L., Oliveira S., Carvalho A.M. & Ferreira I. (2010). In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products, 32, 572-579.
  • 6. Conedera M., Manetti M.C., Giudici F. & Amorini E. (2021). Castanea sativa in Europe: Distribution, habitat, usage and threats. European Atlas of Forest Tree Species, European Commission, 78-79 pp.
  • 7. Dönmez İ.E., Selçuk S., Sargın S. & Özdeveci H. (2016). Kestane, fındık ve antepfıstığı meyve kabuklarının kimyasal yapısı. Turkish Journal of Forestry, 17, 174-177.
  • 8. Eroğlu H. & Gülsoy S.K. (2008). A Comparative study of some tumorous and normal hardwood kraft pulp properties. Wood Research, 53, 77-84.
  • 9. FAOSTAT (2022). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL/visualize
  • 10. Gençer A. & Gül Türkmen H. (2016). Determination of paper production conditions of wild cherry heartwood and sapwood. Journal of Bartın Faculty of Forestry, 18, 23-31.
  • 11. Gençer A. & Özgül U. (2016). Utilization of common hazelnut (Corylus avellana L.) prunings for pulp production. Drvna Industrija, 67, 157-162.
  • 12. Gençer A., Özgül U., Onat S.M., Gündüz G., Yaman B. & Yazıcı H. (2018). Chemical and morphological properties of apricot wood (Prunus armeniaca L.) and fruit endocarp. Journal of Bartin Faculty of Forestry, 20, 205-209.
  • 13. González López N., Moure A., Domínguez H. & Parajó J.C. (2012). Valorization of chestnut husks by non-isothermal hydrolysis. Industrial Crops and Products, 36, 172-176.
  • 14. Gullón B., Eibes G., Dávila I., Moreira M.T., Labidi J. & Gullón P. (2018). Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydrate Polymers, 192, 75-83.
  • 15. Gulsoy S.K. & Tufek S. (2013). Effect of chip mixing ratio of Pinus pinaster and Populus tremula on kraft pulp and paper properties. Industrial & Engineering Chemistry Research, 52(6), 2304-2308.
  • 16. Gulsoy S.K. & Ozturk F. (2015). Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4), 875-882.
  • 17. Gülsoy, S. K., Eroğlu, H. & Merev, N. (2005). Chemical and wood anatomical properties of tumorous Wood in a Turkish White oak (Quercus robur subsp. robur). IAWA Journal, 26(4), 469-476.
  • 18. Gülsoy S.K., Kılıç Pekgözlü A. & Aktaş A.C. (2015). Utilization of the pomegranate tree (Punica granatum L.) in the paper industry. Turkish Journal of Agriculture and Forestry, 39(2), 295-299.
  • 19. Gülsoy S.K. & Şimşir S. (2018). Chemical composition, fiber morphology, and kraft pulping of bracken stalks (Pteridium aquilinum (L.) Kuhn). Drvna Industrija, 69(1), 23-33.
  • 20. Gülsoy S.K., Aksoy H., Türkmen H.G. & Çanakçi G. (2021). Fiber morphology and chemical composition of heartwood and sapwood of red gum, black willow, and oriental beech. Journal of Bartin Faculty of Forestry, 23(1), 119-124.
  • 21. He Y.C., Liu F., Di J.H., Ding Y., Zhu Z.Z., Wu Y.Q., Chen L., Wang C., Xue Y.F., Chong G.G. & Ma C.L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops and Products, 81, 129-138.
  • 22. Husanu E., Mero A., Rivera J.G., Mezzetta A., Ruiz J.C., D’Andrea F., Pomelli C.S. & Guazzelli L. (2020). Exploiting Deep Eutectic Solvents and Ionic Liquids for the Valorization of Chestnut Shell Waste. ACS Sustainable Chem. Eng. 2020, 8, 18386−18399.
  • 23. Kilic A., Hafizoglu H., Dönmez I.E., Tümen I., Sivrikaya H., Reunanen M. & Hemming J. (2011). Extractives in the cones of Pinus species. European Journal of Wood and Wood Products, 69(1), 37-40.
  • 24. Lenhart A. & Chey D.W. (2017). A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. American Society for Nutrition. Adv Nutr 8:587–96.
  • 25. Liang J., Wu J. & Xu J. (2021). Low-formaldehyde emission composite particleboard manufactured from waste chestnut bur. Journal of Wood Science, 67(1), 1-10.
  • 26. Morales A., Gullón B., Dávila I., Eibes G., Labidi J. & Gullón J. (2018). Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products, 124, 582-592.
  • 27. Moure A., Conde E., Falqué E., Domínguez H. & Parajó J.C. (2014). Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Research International, 65, 359-366.
  • 28. Rowell R.M. (2005). Wood Chemistry and Wood Composites. CRC Press, USA.
  • 29. Spearin W.E. & Isenberg I.H. (1947). Maceration of woody tissue with acetic acid and sodium chlorite. Science, 105, 214-214.
  • 30. TAPPI T 222 om-02: (2002). Acid-insoluble lignin in wood and pulp. TAPPI. Atlanta, GA, USA, TAPPI Press. https://www.tappi.org
  • 31. Vázquez G., Fontenla E., Santos J., Freire M.S., González-Álvarez J. & Antorrena G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28(3), 279-285.
  • 32. Wise L.E. & Jahn E.C. (1952). Wood Chemistry, 2nd Edition, Vol.1-2, Reinhold Publication Co.New York, USA.
  • 33. Yaman B. & Gencer A. (2005). Fiber Morphology of kiwi (Actinidia deliciosa (A. Chev.) CF Liang & AR Ferguson) grown in Trabzon. Turkish Journal of Forestry, 6, 149-155.