Contralateral suppression of transient evoked otoacoustic emissions in children with phonological disorder

Contralateral suppression of transient evoked otoacoustic emissions in children with phonological disorder

Background: Perception of acoustic details in the speech signal is important for speech sound development. The medial olivocochlear pathway, a part of the auditory efferent system, plays a role in stimulus-related control of the cochlea. One clinical tool to evaluate the medialolivocochlear activity, which is thought to improve speech perceptionin noise, is the suppression of otoacoustic emissions.Aims: This study investigated the suppression of transient evoked otoacoustic emissions in children with phonological disorder in comparison with that in typically developing controls.Study Design: Case-control study.Methods: A total of 23 children with phonological disorder (aged 5-10years) and 21 age- and sex-matched controls (P > 0.05) participated inthe study. Participants had pure-tone thresholds ≤ 15 dB hearing lossand normal middle ear functions. Transient evoked otoacoustic emissions with and without contralateral acoustic stimulation were measured.Results: Although the mean transient evoked otoacoustic emissionssuppressions were lower in the group with phonological disorderthan in the controls, these differences were not statistically significant (P > 0.05). No left/right ear asymmetry of transient evoked otoacoustic emissions suppression was detected in either of the groups(P > 0.05).Conclusion: Children with phonological disorder did not show alterations in medial olivocochlear functioning in the medial olivocochlear activity as measured by the contralateral suppression of transientevoked otoacoustic emissions.

___

  • 1. Shriberg LD. Diagnostic markers for child speech-sound disorders: introductory comments. Clin Linguist Phon. 2003;17(7):501-505. [Crossref]
  • 2. de Freitas CR, Mezzomo CL, Vidor DCGM. Phonemic discrimination and the relationship with other linguistic levels in children with typical phonological development and phonological disorder. Codas. 2015; 27(3):236-241. [Crossref]
  • 3. Mellon NK. Language and speech acquisition. In: Niparko JK, editor. Cochlear implants: principles & practices. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2009:p.245-262.
  • 4. Hedge MN, Pomaville F. Assessment of communication disorders in children: resources and protocols. 3rd ed. San Diego, CA: Plural Publishing; 2017.
  • 5. Preston JL, Irwin JR, Turcios J. Perception of speech sounds in school-age children with speech sound disorders. Semin Speech Lang. 2015;36(4):224-233. [Crossref]
  • 6. Mattsson TS, Lind O, Follestad T, Grøndahl K, Wayne W, Nordgard S. Contralateral suppression of otoacoustic emissions in a clinical sample of children with auditory processing disorder. Int J Audiol. 2019; 58(5):301-310. [Crossref]
  • 7. Smith DW, Keil A. The biological role of the medial olivocochlear efferents in hearing: separating evolved function from exaptation. Front Syst Neurosci. 2015;9:12. [Crossref]
  • 8. Velenovsky DS, Glattke TJ. Suppression of otoacoustic emissions in populations with normal hearing sensitivity. In: Robinette MS, Glattke TJ, editors. Otoacoustic emissions: clinical applications. New York, Thieme Medical Publishers; 2007:131-159.
  • 9. Guinan Jr JJ. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006:27(6):589-607. [Crossref]
  • 10. Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chery-Croze S. Auditory efferents involved in speech-in-noise intelligibility. Neuroreport. 1997;8(7):1779-1183. [Crossref]
  • 11. Kumar U, Vanaja CS. Functioning of olivocochlear bundle and speech perception in noise. Ear Hear. 2004;25(2):142-146. [Crossref]
  • 12. Mertes IB, Wilbanks EC, Leek MR. Olivocochlear efferent activity is associated with the slope of the psychometric function of speech recognition in noise. Ear Hear. 2018;39(3):583-593. [Crossref]
  • 13. Wagner W, Frey K, Heppelmann G, Plontke SK, Zenner HP. Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing. Acta Otolaryngol. 2008;128(1): 53-60. [Crossref]
  • 14. Stuart A, Butler AK. Contralateral suppression of transient otoacoustic emissions and sentence recognition in noise in young adults. J Am Acad Audiol. 2012;23(9):686-696. [Crossref]
  • 15. Sharma M, Purdy SC, Kelly AS. Comorbidity of auditory processing, language, and reading disorders. J Speech Lang Hear Res. 2009;52(3):706-722. [Crossref]
  • 16. Ferguson MA, Hall RL, Riley A, Moore DR. Communication, listening, cognitive and speech perception skills in children with auditory processing disorder (APD) or specific language impairment (SLI). J Speech Lang Hear Res. 2011;54(1):211-227. [Crossref]
  • 17. Muchnik C, Ari-Even Roth D, Othman-Jebera R, Putter-Katz H, Shabtai EL, Hildesheimer M. Reduced medial olivocochlear bundle system function in children with auditory processing disorders. Audiol Neurootol. 2004;9(2):107-114. [Crossref]
  • 18. Sanches SG, Carvallo RM. Contralateral suppression of transient evoked otoacoustic emissions in children with auditory processing disorder. Audiol Neurootol. 2006;11:366-372. [Crossref]
  • 19. Oppee J, Wei S, Stecker N. Contralateral suppression of distortion product otoacoustic emissions in children with auditory processing disorders. J Otol. 2014;9(1):21-26. [Crossref]
  • 20. Rocha-Muniz CN, Mamede Carvallo RM, Schochat E. Medial olivocochlear function in children with poor speech-in-noise performance and language disorder. Int J Pediatr Otorhinolayngol. 2017;96:116-121. [Crossref]
  • 21. Didone DD, Kunst LR, Weich TM, Tochetto TM, Mota HB. Function of the medial olivocochlear system in children with phonological disorders. J Soc Bras Fonoaudiol. 2011;23(4):358-363. [Crossref]
  • 22. Robertson EK, Joanisse MF, Desroches AS, Ng S. Categorical speech perception deficits distinguish language and reading impairments in children. Dev Sci. 2009;12(5):753-767. [Crossref]
  • 23. Ziegler JC, Pech-Georgel C, George F, Alario FX, Lorenzi C. Deficits in speech perception predict language learning impairment. Proc Natl Acad Sci U S A. 2005;102(39):14110-14115. [Crossref]
  • 24. Bailey PJ, Snowling MJ. Auditory processing and the development of language and literacy. Br Med Bull. 2002;63:135-146. [Crossref]
  • 25. Shriberg LD, Strand EA, Fourakis M, et al. A diagnostic marker to discriminate childhood apraxia of speech from speech delay: III. Theoretical coherence of the pause marker with speech processing deficits in childhood apraxia of speech. J Speech Lang Hear Res. 2017;60(4):1135-1152. [Crossref]
  • 26. Ege P, Acarlar F, Turan F. Ankara Artikülasyon Testi El Kitabı. Ankara: Ankara Universitesi; 2005.
  • 27. Collet L, Veuillet E, Bene J, Morgon A. Effects of contralateral white noise on clickevoked emissions in normal and sensorineural ears: towards an exploration of the medial olivocochlear system. Audiology. 1992;31(1):1-7. [Crossref]
  • 28. Clarke EM, Ahmmed A, Parker D, Adams C. Contralateral suppression of otoacoustic emissions in children with specific language impairment. Ear Hear. 2006;27(2):153- 160. [Crossref]
  • 29. Vilela N, Barrozo TF, Pagan-Neves L, Sanches SG, Wertzner HF, Carvallo RM. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children. Clinics (Sao Paulo). 2016;71;62-68. [Crossref]
  • 30. Burguetti FAR, Carvallo RMM. Efferent auditory system: its effect on auditory processing. Braz J Otorhinolaryngol. 2008;74:737-745. [Crossref]
  • 31. Yalçınkaya F, Yılmaz ST, Muluk NB. Transient evoked otoacoustic emissions and contralateral supressions in children with auditory listening problems. Auris Nasus Larynx. 2010;37:47-54. [Crossref]
  • 32. Rocha-Muniz CN, Zachi EC, Teixeira RA, Ventura DF, Befi-Lopes DM, Schochat E. Association between language development and auditory processing disorders. Braz J Otorhinolarngol. 2014;80(3):231-236. [Crossref]
  • 33. Khalfa S, Morlet T, Micheyl C, Morgon A, Collet L. Evidence of peripheral hearing asymmetry in humans: clinical implications. Acta Otolaryngol. 1997;117(2):192-196. [Crossref]
  • 34. Philibert B, Veuillet E, Collet L. Functional asymmetries of crossed and uncrossed medial olivocochlear efferent pathways in humans. Neurosci Lett. 1998;253:99-102. [Crossref]
  • 35. Dodd B. Differential diagnosis of pediatric speech sound disorder. Curr Dev Disord Rep. 2014;1:189-196. [Crossref]
Balkan Medical Journal-Cover
  • ISSN: 2146-3123
  • Başlangıç: 2015
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Contralateral suppression of transient evoked otoacoustic emissions in children with phonological disorder

Erdoğan BULUT, Memduha TAŞ, Şule YILMAZ

A new angiographic finding: primary peripheral slow flow

Ercan AKŞİT, Fatih AYDIN, Emine GAZİ, Bahadır KIRILMAZ

Rediscovery of a forgotten disease: Hereditary Angioedema

Okan GÜLBAHAR, Anastasios E. GERMENIS

Therapeutic management of hereditary angioedema: past, present, and future

Anna VALERIEVA, Denislava NEDEVA, Vania YORDANOVA, Elena PETKOVA, Maria STAEVSKA

Validity and reliability of the Turkish version of the adult ADHD Self-Report Screening Scale for DSM-5

Yankı YAZGAN, Ömer AYDEMİR, Neşe YORGUNER, Serkut BULUT, Herdem ASLAN GENÇ, Gresa CARKACHIU BULUT

Emergence of multidrug-resistant and -hypervirulent Streptococcus agalactiae in Bulgarian patients

Raina TZVETANOVA GERGOVA, Adile MUHTAROVA, Virna Maria TSITOU, Ivan MITOV

Cause-of-death distributions and mortality trends in Turkey between 2009 and 2017

Gül ERGÖR, Ayşe Gülsen TEKER, Ahmet Naci EMECEN

Rapid progression after ibrutinib discontinuation in a patient with mantle cell lymphoma who has severe coronavirus disease 2019 infection

Fehmi HİNDİLERDEN, İpek YÖNAL HİNDİLERDEN, Reyhan DİZ KÜÇÜKKAYA

A case of intussusception caused by diffuse large B cell lymphoma in ileocecal region

Wen ZHANG, Shuaiyang ZHOU, Zhenguo QIAO, Jianzhong WU, Zhi ZHANG

Primary renal neuroblastoma mimicking Wilms’ tumor

Tuba EREN, Vedat AKÇAER, Ebru TAŞTEKİN