Simulation of Entanglement Dynamics of Flying Qubits Through Photonic Fields

Simulation of Entanglement Dynamics of Flying Qubits Through Photonic Fields

The capability of estimating and manipulating thedynamics of entanglement is prerequisite to develop newquantum technologies. In this stud}r an experimentally accessiblemodel was developed in order to simulate the dynamics ofentangled atomic pairs. The model depends on modified versionof micrnmaser. In contrast to standard micromaser set-up inwhich the atomic degrees of freedom are traced out and photonit'field is the system of interest, this model is interested in thedynamics of one of the entangled atomic qnhits injected intothe successive photonic fields. The numerical simulations withrealistic parameters of quantum dynamics show that the resultsare reliable und consistent with the previously published results.The model can be used to exactly quantify the entanglementdynamics of quantum systems not only for numerical simulationsbut also as an efficient photonic quantum simulator since itdepends on modified version of veryr well-known experimentalarchitecture.

___

  • [ll M. A. Nielsen and I. l.. Chuang. Quantum Crunpurefion and Quantum infonnerinnr ilki! Anniversary Edition, 10th ed. Cambridge New York: Cambridge University Press, .lan. 20I I.
  • [2| H. T. Quan, Y.-x. Liu, C. P. Sun, and F. Nori, “Quantum thermodynamic cycles and quantum heal engines," Physicist! Review E, vol. “re, no. 3, p. 03I IDS, Sep. 200?.
  • [3] S. Çakmak. F'. Allintzıs. and Ü'. E. Müstecaplıoğlu. “Lipkin—Meslıkov— Glick model in quantum Üllo cycle.“ The European Ph),-sim! Journal Pius. vol. I31. no. 6. .Iun. 2ÜI6. DOI: 10. 17694/bajece.73922 61
  • |4| D. Türkpençe and Ö. E. Müstecaplıoğlu, “Quantum fuel with multilevel atomic coherence l'or ultrahigh specific work in photonie Carnot engine." Physical Review E. vol. 93. no. |. p. (”2145, lan. 2016.
  • |5| F. Altintas and Ö. E. Müstecaplıoğlu. “General formalism ol' local thcrmthlynamics with an example: Quantum Otto engine with spin1/2 coupled to an arbitrary spin.” Physic-u! Review L-'. vol. 92. ne. 2. p. 022142. Aug. 2015.
  • R. llorodecki. P. liorudcclti. M. ilomoecki. and K. llomdccki. "Quantum entanglement,“ Reviews of Mmj‘srn Physics, vol, BI. no. 2, pp, 865—942, lun. 2009,
  • J. Yin.J.—G. Ren. H. Lu, 't'. Can, H.—|.. Yong, Y,—P. Wu, C. [.iu. 3.44, Lian, F. Zhou, ‘r’. Jiang. XJ). Cal. F', Xu. (i.—S. Pan. J.—J. Jiu-. 'li—M, Huang. H. Yin, J.—‘r'. Wang. *ıi—A. Chen. (İ.—Z. Peng. and J.—W. Pm. “Quantum Dclepınrtation and entanglement distribution over IOO-kilometre free-spam channels.“ Naime. vol. 488, no. 7410, pp. IES IBS, Aug. ZBI2.
  • M. Zuppardo, T. Krisnanda. T. Paterck. S. Bandyopadhyay, A.. Bancıjee. P. Deb, S. Halder. K. Medi. and M. Patcmostro, “Excessive distribution of quantum entanglement.” Physical Rm’iewA. vol. 93. no. 1. p. Ul2305. Jan. 2016.
  • H. I. Kimble, “The quantum internet.” Nature. vol. 453. no. ””98. pp. 10234030. Jun. 2008.
  • [10I [. Mareikie. H. ile Riednıaltcn. W. Tittel. H. Zbinden. M. Legré. and N. Gisin. "Distribution of 'I'înıe—Bin Entangled Quhirs over SÜ km of Optical Fiber." Physics! Review [ell-ers. vol. 93. no. |S. p. 130502. Oct. 2004.
  • ll“ 1‘. lnagaki. N. Matsuda. Ü. 'ladanagu. M. Asobc. and Il. 'l'altosue, “Entarıglement distribution over 3-00 km of fiber," Optics Express, vol. 2.1, no. 20. pp, 232.4l—23 2.49. Oct 2.0I3.
  • |12I M. A. M, Versteegh, M. E. Reimer. A. A, van den Berg. G. Juslca, V, Dimastrodonato. A. Gocalinska, F.. Pelueehl. and V. Zwiller, "Single pairs of time—bin-ennmglcd photons,“ Physicrji Review ll. vol. 92, no. 3, p. 033302, Sep. 2,015.
  • [ifil S. Monmngcm, “Dynamically limIizod systems: Exponential sensitivity of entanglement and efficient quantum simulations," Physical Review .4, vol. 'li), no. 3, p. 03231 I. Sep. 2004.
  • [HI U. Maluycr and V. Kcndun. “Dccohcrcncc versus entanglement in coined quantum walks." New Journal of Physics. vol. 9. no. 4. p. S?. 2007.
  • llSI B. Bcllumo. R. Lo Franco. and G. Cumpagno. “Entanglement dynamics of two independent qubits in environments with and without memory." Physicei Review .4. vol. Tî. no. 3, p. 032342. Mar. 2003.
  • |lfi| C. Wang and ().—II. Chen. "hattın dynamics of quantum ccs-relations of two qubits coupled to bosoniı; baths." New Jam-mi ufPinsies. vol. IS. no. 10. p. 103-020. 2013.
  • |l'i'| P. Filipowica. J. Javanainen. and P. Mcystre. "lheory of micmsoopic mascr." Physimı' Review A, vol. 34. no. 4. pp. son—3031. Oct. I936.
  • |l3| M. ?'hong. M. P. Hodges. R. |.. Ahlefeldt, J. G. Bıu'd'ıtılomcw. S. F.. Reuven, S. M, Winig, J. J. [.ongdell, and M. J. Sellers, “Optically addressable nuclear spins in solid with six-hour coherence time." Nature. vol, SIT, no. 7533. pp. ili?—ISO. lim. 2.015.
  • [19l T. Yu and J. H. Ebcrly, “Finite-Time Discntanglcmcnt Via Spontaneous Emission,“ Physical Review [effect. vol. 93, no. [4, p. 1404-04, Sop. zona
  • W. P. Schlci-ch, Quantum Optics in Phase Space. lst ed. Berlin; New York: Wilcy—VCH. Feb. 2001.
  • I?.” A. Blais. ll.—S. Huang. A. Wallraff. S. M. Girvin. and R. I. Schoelkopl'. “Cavity quantum electrodynamies I'or superconducting electrical circuits: An architecture for quantum computation.” Physical Review A. vol. 69. no. Er. p. 062320. lun. 2004.
  • |22| M. Saffman. 'I". C. Walker. and K. Metiner. "Ouantum information with Rydberg atoms.” Reviews omeiem Physics. vol. 82.110. 3. pp. 2313— 2363. Aug. 20“].
  • A. Al-ersimi and D. r. V. James. "Sudden death of entanglement at finite temperature," Nana'nın! Review A. ml. 'n'. no, I, p. 012i”, Jan. 2008.