Improving Farm Management Information Systems with Data Mining

Improving Farm Management Information Systems with Data Mining

Over the past several years, farm enterprises have grown in size substantially while their number has steadily declined. As the size of their farms grow more and more farmers are deploying information systems, commonly called as Farm Management Information Systems (FMIS), to manage the day to day activities of their farms. The deployment of FMIS enable farmers to capture detailed data that can potentially be analysed by data mining tools to provide valuable information for optimizing the farm enterprises. However, data mining is generally not a common feature of many FMIS. In order to evaluate the suitability of data mining for use in FMIS, two case studies were performed using data captured in FMIS and applying various data mining algorithms. Microsoft Azure Machine Learning Studio is chosen because it provides a simple drag-and-drop visual interface that can be used by farm domain experts. In this study, two common problems were addressed in dairy farming: calving prediction of dairy cows and prediction of lactation value of milking cows. In both cases data mining models were built and experiments were run and results in both cases indicate that the required data is available from FMIS and data mining techniques provides acceptable performance. It was also shown that farm domain experts can easily use a user-friendly and drag-and-drop data mining tools with minimal initial training. Based on the insight from the two case studies and literature study, several decision problems that can be addressed with data mining such as heat prediction and lameness prediction were identified.

___

  • [1] Albersmeier, F., Schulze, H., Jahn, G., & Spiller, A. (2009). The reliability of third-party certification in the food chain: From checklists to risk-oriented auditing. Food Control, 20(10), 927-935. doi:https://doi.org/10.1016/j.foodcont.2009.01.010
  • [2] Alsaaod, M., Römer, C., Kleinmanns, J., Hendriksen, K., Rose-Meierhöfer, S., Plümer, L., & Büscher, W. (2012). Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior. Applied Animal Behaviour Science, 142(3), 134-141. doi:10.1016/j.applanim.2012.10.001
  • [3] Azzaro, G., Caccamo, M., Ferguson, J. D., Battiato, S., Farinella, G. M., Guarnera, G. C., . . . Licitra, G. (2011). Objective estimation of body condition score by modeling cow body shape from digital images. J Dairy Sci, 94(4), 2126-2137. doi:10.3168/jds.2010-3467
  • [4] Borchers, M. R., Chang, Y. M., Proudfoot, K. L., Wadsworth, B. A., Stone, A. E., & Bewley, J. M. (2017). Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J Dairy Sci, 100(7), 5664-5674. doi:10.3168/jds.2016-11526
  • [5] Caraviello, D. Z., Weigel, K. A., Craven, M., Gianola, D., Cook, N. B., Nordlund, K. V., . . . Wiltbank, M. C. (2006). Analysis of Reproductive Performance of Lactating Cows on Large Dairy Farms Using Machine Learning Algorithms. J Dairy Sci, 89(12), 4703-4722. doi:10.3168/jds.S0022-0302(06)72521-8
  • [6] Choubey, M. K. (2011). IT Infrastructure and Management (For the GBTU and MMTU): Pearson Education India.
  • [7] Chung, Y., Lee, J., Oh, S., Park, D., Chang, H., & Kim, S. (2013).
  • Automatic detection of cow’s oestrus in audio surveillance system. Asian-Australasian journal of animal sciences, 26(7), 1030.
  • [8] Cook, T. D., Campbell, D. T., & Day, A. (1979). Quasi-experimentation: Design & analysis issues for field settings (Vol. 351): Houghton Mifflin Boston.
  • [9] Delaval. (14-3-2018a). BCS
  • [10] Delaval. (14-3-2018b). View BCS.
  • [11] Delta, C. (February 1998). lactatieproductie en 305 dagenproductie. Handboek NRS.
  • [12] Fenlon, C., O’Grady, L., Doherty, M., Butler, S., Shalloo, L., &
  • Dunnion, J. (2016, 12-15 Dec. 2016). Regression Techniques for Modelling Conception in Seasonally Calving Dairy Cows. Paper presented at the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).
  • [13] Grzesiak, W., Błaszczyk, P., & Lacroix, R. (2006). Methods of predicting milk yield in dairy cows—Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture, 54(2), 69-83.
  • [14] Hady, M. F. A., & Schwenker, F. (2013). Semi-supervised Learning. In M. Bianchini, M. Maggini, & L. C. Jain (Eds.), Handbook on Neural Information Processing (pp. 215-239). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [15] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning The elements of statistical learning (pp. 485-585): Springer.
  • [16] Hosseini, S., Turhan, B., & Mäntylä, M. (2017). A benchmark study on the effectiveness of search-based data selection and feature selection for cross project defect prediction. Information and Software Technology.
  • [17] Husemann, C., & Novković, N. (2014). FARM MANAGEMENT INFORMATION SYSTEMS: A CASE STUDY ON A GERMAN MULTIFUNCTIONAL FARM.
  • [18] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning with Applications in R. doi:DOI 10.1007/978-1-4614-7138-7
  • [19] Kamphuis, C., Mollenhorst, H., Feelders, A., Pietersma, D., & Hogeveen, H. (2010). Decision-tree induction to detect clinical mastitis with automatic milking. Computers and Electronics in Agriculture, 70(1), 60-68. doi:https://doi.org/10.1016/j.compag.2009.08.012
  • [20] Kim, C.-H., Weston, R. H., Hodgson, A., & Lee, K.-H. (2003). The complementary use of IDEF and UML modelling approaches. Computers in Industry, 50(1), 35-56.
  • [21] Kim, T., & Heald, C. W. (1999). Inducing inference rules for the classification of bovine mastitis. Computers and Electronics in
  • Agriculture, 23(1), 27-42. doi:https://doi.org/10.1016/S0168-1699(99)00003-4
  • [22] Mahmoud, F., Christopher, B., Maher, A., Jürg, H., Alexander, S., Adrian, S., & Gaby, H. (2017). Prediction of calving time in dairy cattle. Animal Reproduction Science, 187, 37-46. doi:https://doi.org/10.1016/j.anireprosci.2017.10.003
  • [23] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
  • [24] Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management information systems in precision agriculture. Computers and Electronics in Agriculture, 70(2), 328-336. doi:https://doi.org/10.1016/j.compag.2009.08.013
  • [25] Paraforos, D. S., Vassiliadis, V., Kortenbruck, D., Stamkopoulos, K., Ziogas, V., Sapounas, A. A., & Griepentrog, H. W. (2017). Multi-level automation of farm management information systems. Computers and
  • Electronics in Agriculture, 142, 504-514. doi:https://doi.org/10.1016/j.compag.2017.11.022
  • [26] Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking: " O'Reilly Media, Inc.".
  • [27] Rahman, A., Smith, D. V., Little, B., Ingham, A. B., Greenwood, P. L., & Bishop-Hurley, G. J. (2018). Cattle behaviour classification from collar, halter, and ear tag sensors. Information Processing in Agriculture, 5(1), 124-133. doi:https://doi.org/10.1016/j.inpa.2017.10.001
  • [28] Rutten, C. J., Steeneveld, W., Vernooij, J. C. M., Huijps, K., Nielen, M., & Hogeveen, H. (2016). A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data. J Dairy Sci, 99(8), 6764-6779. doi:10.3168/jds.2016-10935
  • [29] Shahinfar, S., Page, D., Guenther, J., Cabrera, V., Fricke, P., & Weigel, K. (2014). Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms. J Dairy Sci, 97(2), 731-742. doi:10.3168/jds.2013-6693
  • [30] Shahriar, M. S., Smith, D., Rahman, A., Freeman, M., Hills, J., Rawnsley, R., . . . Bishop-Hurley, G. (2016). Detecting heat events in dairy cows using accelerometers and unsupervised learning. Computers and Electronics in Agriculture, 128, 20-26. doi:https://doi.org/10.1016/j.compag.2016.08.009
  • [31] Šmite, D., Wohlin, C., Gorschek, T., & Feldt, R. (2010). Empirical evidence in global software engineering: a systematic review. Empirical software engineering, 15(1), 91-118.
  • [32] Sørensen, C. G., Pesonen, L., Bochtis, D. D., Vougioukas, S. G., & Suomi, P. (2011). Functional requirements for a future farm management information system. Computers and Electronics in Agriculture, 76(2), 266-276. doi:https://doi.org/10.1016/j.compag.2011.02.005
  • [33] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1): MIT press Cambridge.
  • [34] Valletta, J. J., Torney, C., Kings, M., Thornton, A., & Madden, J. (2017). Applications of machine learning in animal behaviour studies. Animal Behaviour, 124, 203-220.
  • [35] Vanrell, S. R., Chelotti, J. O., Galli, J., Rufiner, H. L., & Milone, D. H. (2014). 3d acceleration for heat detection in dairy cows. Paper presented at the XLIII Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO)-VI Congreso Argentino de AgroInformática (CAI)(Buenos Aires, 2014).
  • [36] Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., & Wesslen, A. (2000). Experimentation in software engineering: an introduction. 2000: Kluwer Academic Publishers.
  • [37] Yazdanbakhsh, O., Zhou, Y., & Dick, S. (2017). An intelligent system for livestock disease surveillance. Information Sciences, 378, 26-47. doi:https://doi.org/10.1016/j.ins.2016.10.026
  • [38] Zaborski, D., Proskura, W. S., Grzesiak, W., Szatkowska, I., & Jędrzejczak-Silicka, M. (2017). Use of random forest for dystocia detection in dairy cattle. Applied Agricultural and Forestry Research, 147.
  • [39] Tummers, J., Kassahun, A., & Tekinerdogan, B. (2019). Obstacles and features of Farm Management Information Systems: A systematic literature review. Computers and Electronics in Agriculture, 157, 189-204.