FSRFT Based Broadband Double Matching via Passband Extremums Determination

FSRFT Based Broadband Double Matching via Passband Extremums Determination

Fast simplified real frequency technique (FSRFT) isa numerical solver used to solve microwave broadband doublematching(DM) circuit design problems in a much faster andeffective manner. Recently, it has been reported that an FSRFTbased Matlab code can complete the design of a orderlowpass lumped element double matching network to match agiven generator and load impedance within an optimization timeof only 0.6 seconds, a 47 fold less time than that of the samedesign done using the classical simplified real frequencytechnique (SRFT). FSRFT owes this superior speed performanceto the fact that it tracks only (system unknowns plus 1)number of passband extremum points selected from among thenumber of gain data ( ). This work introduces a simplenumerical technique called PED (passband extremumsdetermination technique) to be used in determination of thesepassband extremum points (PEs). An exemplary ordermicrowave bandpass DM circuit design using FSRFT basedMatlab (of Mathworks Inc.) code and the simulation of thisdesign via MWO (of AWR Corp.) has yielded the same circuitperformance with an exact agreement. Thus, FSRFT, equippedwith the PED, newly proposed hereby, might be used as apowerful solver in designing broadband circuits in many fieldssuch as RF/microwave, radar, and communications

___

  • R. Kopru, “FSRFT—fast simplified real frequency technique via selective target data approach for broadband double matching”, IEEE Transactions on circuits and systems-II: Express briefs, Vol. 64, No. 2, february 2017, pp.141-145.
  • Matlab, https://www.mathworks.com Mathworks Inc., MA., USA, retrieved on april 8, 2018.
  • MWO www.awrcorp.com, AWR Corp, retrieved on april 8, 2018.
  • H. J. Carlin, “A new approach to gain-bandwidth problems,” IEEE Trans. Circuits Syst., vol. 24, no. 4, pp. 170-175, Apr. 1977.
  • B. S. Yarman, “Broadband matching a complex generator to a complex load,” Ph.D. dissertation, ECE Dept. Cornell Univ., NY, USA, 1982.
  • B. S. Yarman, Design of Ultra Wideband Antenna Matching Networks Via Simplified Real Frequency Techniques, Netherlands: Springer, 2008, pp. 183-225.
  • B. S. Yarman, Design of Ultra Wideband Power Transfer Networks, 1st ed., Chichester, UK.: John Wiley & Sons Ltd., 2010.
  • W. K. Chen, Broadband Matching:Theory and Implementations, 3rd ed., World Scientific, ISBN: 978-9971-5-0219-5, Nov. 1998.
  • Y. S. Zhu, W. K. Chen, Computer-Aided Design of Communication Networks, World Scientific, ISBN: 978-981-02-2351-9, April 2000
  • B. S. Yarman and H. J. Carlin, “A simplified real frequency technique applied to broad-band multistage microwave amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 12, pp. 2216-2222, Dec. 1982.
  • L. Zhu, B. Wu, and C. Sheng, ”Real frequency technique applied to synthesis of broad-band matching networks with arbitrary nonuniform losses for MMICs,” IEEE Trans. Microw. Theory Techn., vol. 36, no. 12, pp. 1614–1620, Dec. 1988.
  • P. Jarry and A. Perennec, “Optimization of gain and VSWR in multistage microwave amplifier using real frequency method,” in Proc. ECCTD, Paris, FR., 1987, pp. 203–208.
  • R. Kopru, H. Kuntman, and B. S. Yarman, “On numerical design technique of wideband microwave amplifiers based on GaN small-signal model,” Analog Integr. Circ. Sig. Procc., vol. 81, no. 1, pp. 71-87, Jul. 2014.
  • G. Sun and R. H. Jansen, “Broadband doherty power amplifier via real frequency technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 99-111, Jan. 2012.
  • N. Tuffy, L. Guan, A. Zhu, and T. J. Brazil, “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no.6, pp. 1952-1963, Jun. 2012.
  • Y. Sun and X. Zhu, “Broadband continuous class-F-1 amplifier with modified harmonic-controlled network for advanced long term evolution application,” IEEE Microw.Compon. Lett., vol. 25, no.4, pp. 250-252, Jun. 2015.
  • L. Ma, J. Zhou, and W. Huang, “A broadband highly efficient harmonictuned power amplifier exploiting compact matching network,” IEEE Microw.Compon. Lett., vol. 25, no.11, pp. 250-252, Nov. 2015.
  • R. Kopru, H. Kuntman and B. S. Yarman, “Novel approach to design ultra wideband microwave amplifiers: normalized gain function method”. Vol. 22, No. 3, pp. 672-686, September 2013, Radioengineering.
  • R. Kopru, S. Kılınç, C. Aydın, D. C. Atilla, C. Karakuş, B. S. Yarman, “Ultra wideband matching network design for a V-shaped square planar monopole antenna”, International Journal of Microwave and Wireless Technologies, Cambridge Univ. Press, 2014, volume 6, issue 06, pp. 555-564.
  • R. Kopru, S. Kilinc, A. Aksen, and B. S. Yarman, “Design and implementation of wideband microwave amplifiers based on normalized gain function”, BenMAS2014, 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-Systems, Radar, Telecommunications, and Biomedical Applications, September 27, 2014, Philadelphia, Pennsylvania, USA.
  • M. Sengul, “Design of practical broadband matching networks with lumped elements,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 9, pp. 552-556, Sep. 2013.
  • A. Kılınç and B. S. Yarman, “High precision LC ladder synthesis part I: Lowpass ladder synthesis via parametric approach,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2074-2083, Aug. 2013.
  • B. S. Yarman, and A. Kılınç, “High precision LC ladder synthesis part II: Immitance synthesis with transmission zeros at DC and infinity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 10, pp. 2719-2729, Oct. 2013.
  • B. S. Yarman, A. Aksen, R. Kopru, N. Kumar, C. Aydin, D. C. Atilla, P. Chacko, “Computer aided Darlington synthesis of an all purpose immittance function”, IU-JEEE Istanbul University Journal of Electrical and Electronıcs Engıneering, Vol. 16, No. 1, pp. 2027-2037, 2016.