BAJECE_Vol2_No3

BAJECE_Vol2_No3

ed and indexed in Copernicus, Index Google Scholarship, the PSCR, DOAJ, Research Bible, Indian Open Access Journals (OAJ), Institutional Repositories (IR), Journal TOCs, J-Gate (Informatics India), Ulrich’s, ResearchGate, International Society of Universal Research in Sciences, DRJI, EyeSource
Keywords:

-,

___

  • Z. V. Kolpashchikova, E. V. Shcherbakova, N. S. Kostyukov, “Polarization processes in electrotechnical porcelain within a wide frequency range”, Glass and Ceram., vol. 60, no.11-12, pp.370-373, 2003.
  • L.U ANIH, “Characterization of Locally Sourced Kaolin-Feldspar- Quartz Triaxial Porcelain for Insulation Applications”, Electric Power Engineering Conference (EPEC), June 2005.
  • J.M.Amigo, J.V. Clause, E. Vicente, J. M. Delgado, M. M. Revento, L. E. Ochando, T. Debaerdemaeker, F. Martı, “X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains”, J. of the Eur. Ceram. Soc., vol. 24, no.1, pp.75-81, 2004.
  • S.P. Chaudhuri, P. Sarkar, A.K. Chakraborty, “Electrical resistivity of porcelain in relation to constitution”, Ceram. Inte. vol. 25, no.1 pp.91- 99, 1999.
  • A. S. Demirkiran, R. Artir, E. Avci, “Electrical resistivity of porcelain bodies with natural zeolite addition”, Ceram. Inter. vol. 36, no.3, pp.917- 921, 2010.
  • S.J. Hwang, Y.J. Kim, H.S. Kim, “La2O–BO–TiO2 Glass/BaO– Nd2O3–TiO ceramic for high quality factor low temperature co-fired ceramic dielectric”, J Electro. Ceram., vol. 18, no.1-2, pp.121-128, 2007.
  • V. Tmovcova, I. Fura, F. Hanic,” Influence of technological texture on electrical properties of industrial ceramics”, J. of Phys. and Chem. of Sol. vol.68, no.5-6, pp.1135-1139, 2007. [8] Ying-Chieh
  • Lee, “Dielectric Properties and Reliability of
  • Zn0.95Mg0.05TiO3+0.25TiO2 MLCCs with Different Pd/Ag Ratios of
  • Electrodes”, Int. J. Appl. Ceram. Technol.,vol. 7, no.1, pp.71-80, 2010.
  • H. M. El-Malah, N. A. Hegab, Studies on a.c. properties of Ca1–xSrxTiO3 perovskites, J. Mater. Sci. vol.42, no.1, pp.332-336,
  • G.B. Kumar, K. Sivaiah, S. Buddhudu, “Synthesis and characterization of ZnWO4 ceramic powder”, Ceram. Inter. vol.36, no.1, pp.199-202, 2010.
  • S.Kitouni, A. Harabi,” Sintering and mechanical properties of porcelains prepared from Algerian raw materials”, Cerâmica, vol.57, no.344, pp.453-460, 2011.
  • V.P. Il’ina, “Feldspar material from Karela for electrical engeneering”, Glass and Ceram., vol.61, no.5-6, pp.195-197, 2004
  • R.A. Islam, Y.C. Chana, M. F. Islam, “Structure–property relationship in high-tension ceramic insulator fired at high temperature”, Mat. Sci. and Eng. vol.B106, no.2, pp.132-140, 2004.
  • V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, “Mullite from clay–reactive alumina for insulating substrate application”, Applied Clay Sci. vol.25, no.1-2, pp.29-35, 2004.
  • K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1970.
  • J. Zheng, P. Guo, and J.D. Wang, “STFC-self-tuning fuzzy controller,” in Proc. IEEE Conf. on Systems, Man and Cybernetics, Chicago, 1992.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment,” IEEE Trans. on Automatic Control, vol. 48, pp. 2238-2244, 2003.
  • A.S. Hauksdóttir, “Analytic expression of transfer function responses and choice of numerator coefficients (Zeros),” IEEE Trans. on Automatic Control, vol. 41, pp. 1482–1488, 1996.
  • S. Jung, and R.C. Dorf, “Novel analytic technique for PID and PIDA controller design,” in Proc. 13th IFAC World Congress, San Francisco, USA, 1996.
  • G.C. Goodwin, A.R. Woodyatt, R.H. Middleton, and J. Shim, “Fundamental limitations due to jw-axis zeros in SISO systems,” Automatica, vol. 35, pp. 857-863, 1999.
  • B.A. Leon de la Barra, “On undershoot in SISO systems,” IEEE Trans. on Automatic Control, vol. 39, pp. 578-581, 1994.
  • D. Graham, and R.C. Lathrop, “The synthesis of “optimum” transient response: criteria and standard forms,” AIEE Transactions, vol. 72, pp. 273-288, 1953.
  • G.F. Franklin, and J.D. Powell, and A. Emami-Naeini, “Feedback control of dynamic systems,” Addison-Wesley, 1994.
  • C. Kessler, “Ein beitrag zur theorie mehrschleifiger regelungen,” Regelungstechnik, vol. 8, pp. 261-266, 1960.
  • N.K. Sinha, Control Systems, 2nd ed. John Wiley & Sons Inc, 1994.
  • M. Zhuang, and D.P. Atherton, “Automatic tuning of optimum PID
  • controllers,” IEE Proc. D, vol. 140, pp. 216-224, 1993
  • P. Naslin, Essentials of Optimal Control, Boston Technical Publishers, . Massachusetts, 1969.
  • Y.C. Kim, L.H. Keel, and S.P. Bhattacharyya, “Transient response control via characteristic ratio assignment and pulsatance assignment,” in Proc. 21th American Control Conference, Anchorage, 2002.
  • S. Manabe, “Coefficient diagram method,” in Proc. 14th IFAC Symposium on Automatic Control in Aerospace, Seoul, 1998.
  • S.E. Hamamci, “A robust polynomial-based control for stable processes with time delay,” Electrical Engineering, vol. 87, pp. 163–172, 2005.
  • T. Liu, W. Zhang, and D. Gu, “Analytical design of two-degree-of- freedom control scheme for open-loop unstable processes with time delay,” Journal of Process Control, vol. 15, pp. 559–572, 2005.
  • A.S. Rao, and M. Chidambaram, “Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay,” Ind. Eng. Chem. Res., vol. 45, pp. 3604-3614, 2006.
  • S. Manabe, and Y.C. Kim, “Recent development of Coefficient Diagram Method,” in Proc. 3rd Asian Control Conference, Shanghai, 2000.
  • M. Araki, and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. of Control, Automation, and Systems, vol. 1, pp. 401-411, 2003.
  • I. Kaya, and D.P. Atherton, “Exact parameter estimation from relay autotuning under static load disturbances,” in Proc. 20th American Control Conference, Arlington, 2001.
  • A. Visioli, “Time-optimal plug&control for integrating and FOPDT processes,” Journal of Process Control, vol. 13, pp. 195–202, 2003.
  • S. Majhi, and D.P. Atherton, “Online tuning of controllers for an unstable FOPDT process,” IEE Proc.- Control Theory Appl., vol. 147, pp. 421-427, 2000.
  • A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes,” IEE Proc.-Control Theory Appl., vol. 148, pp. 180–184, 2001.
  • R.P. Sree, M.N. Srinivas, and M. Chidambaram, “A simple method of tuning PID controllers for stable and unstable FOPDT systems,” Comput. Chem. Eng., vol. 28, pp. 2201–2218, 2004.
  • L. Wang, and W.R. Cluett, “Tuning PID controllers for integrating processes,” IEE Proc.- Control Theory Appl., vol. 144, pp. 385-392, 1997.
  • I. Kaya, “Tuning PI controllers for stable processes with specifications on gain and phase margins,” ISA Transactions, vol. 43, pp. 297-304, 2004.
  • W.R. Cluett, and L. Wang, “New tuning rules for PID control,” Pulp and Paper Canada, vol. 3, pp. 52-55, 1997.
  • Y.G. Wang, and H.H. Shao, “PID autotuner based on gain- and phase- margin specifications,” Ind. Eng. Chem. Res., vol. 38, pp. 3007–3012, 1998. BIOGRAPHY
  • T.T. LieGuojie, C. B. Soh, G.H. Yang, Design of state-feedback decentralized nonlinear Hinf controllers in power systems , Electrical Power & Energy Systems, Vol.24, 2002, pp.601-610.
  • A. D. Falehi, A. Dankoob, S. Amirkhan, H. Mehrjardi, Coordinated Design of STATCOM-Based Damping Controller and Dual-Input PSS to Improve Transient Stability of Power System, International Review of Automatic Control, 2011, pp.1308-1317.
  • A.Y. Sivaramakrishnan, M. V. Hariharan, M. C. Srisailam, Design of a variable-structure load controller using pole assignment technique, Int. J. Contr.,40, 1984, 487-498.
  • G. Shahgholian, A. Rajabi, B. Karimi, Analysis and Design of PSS for Multi-Machine Power System Based on Sliding Mode Control Theory, International Review of Automatic Control, 2010, pp.2241-2250.
  • A. Ghosh, G. Ledwich, O.P. Malik, G.S. Hope, Power system stabilizer based on adaptive control techniques, IEEE Trans. PAS 103, 1984, pp.1983–1989.
  • S.J. Chang, Y.S. Chow, O.P. Malik, G.S. Hope, An adaptive synchronous machine stabilizer, IEEE Trans. PWRS 1, 1986, pp.101– 109.
  • A. Pierre, A perspective on adaptive control of power systems, IEEE Trans. PWRS, Vol.2, 1987, pp.387–396.
  • N.H. Zadeh, A. Kalam, A direct adaptive fuzzy power system stabilizer, IEEE Transaction on Energy Conversion, 14, 1999.
  • N.H. Zadeh, A. Kalam, An indirect adaptive fuzzy-logic power system stabiliser, Electrical power & Energy systems, 24, 2002, pp.837-842.
  • I. Ngamroo, Augmentation of Electrolyzer Control Effect by PSS for Microgrid Stabilization using PID-based Mixed H2/H∞ Control, International Review of Automatic Control, 2011, 3073-3080.
  • S.S. Lee and J.K. Park, Design of power system stabilizer using observer / sliding mode, observer/sliding mode model following and H∞ / sliding mode controllers for small signal stability study, Electrical Power & Energy Systems, Vol.20, No.8, 1998, pp.543-553.
  • T. Hussein, M.S. Saad, A.L. Elshafei, A. Bahgat, Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer, Electric Power Systems Research, Vol.80, 2010, pp.1428-1436.
  • G.H. Hwang, D.W. Kim, J.H. Lee, Y.J. An, Design of Fuzzy Power System Stabilizer Using Adaptive Evolutionary Algorithm, Engineering Applications of Artificial Intelligence, Vol.21, 2008, pp.86-96.
  • E. Nechadi, M. N. Harmas, N. Essounbouli, A. Hamzaoui, Adaptive Fuzzy Sliding Mode Power System Stabilizer Using Nussbaum gain, International Journal of Automation and Computing, Vol.10, No.4, August 2013, pp.281-287.
  • H. M. Soliman, A.L. Elshafei, F. Bendary, W. Mansour, LMI Static output-feedback Design of Fuzzy Power System Stabilizers, Expert Systems with Applications, Vol.36, 2009, pp.6817-6825.
  • H.M. SoIiman, A.L. Eshafei, A.A. Shaltout, M.F. Mors, Robust Power System Stabiliser, IEE Proc-Elec. Power Appl., 147, 2000, pp.285-291. BIOGRAPHY [1]
  • M. Abdel-Salam and E. K. Stanek, “Optimizing field stress of
  • highvoltageinsulators,” IEEE Trans. Electr.Insul., vol. 22, no. 1, pp. 47–56,Feb. 1987.
  • M. Abdel-Salam and E. K. Stanek, “Field optimization of high- voltageinsulators,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 594– 601, Jul.1986.
  • Z. Stih, “High voltage insulating system design by application of contour electrodeand Elect.Insul.,vol. 21, no. 4, pp. 579–584, Aug. 1986.
  • optimization,” IEEE Trans.
  • H. Singer, H. Steinbigler, and P. Weiss, “A charge simulation method for the calculation of high voltage fields,” IEEE Trans. Power App.Syst., vol. 126, no. 1, pp. 1660–1668, Feb. 1974.
  • P. K. Mukherjee and C. K. Roy, “Computation of fields in and around insulators by fictitious point charges,” IEEE Trans. Electr. Insul., vol.EI-13, no. 1, pp. 24–31, Feb. 1978.
  • N. H. Malik, “A review of the charge simulation method and its applications,” IEEE Trans. Elect. Insul., vol. 24, no. 1, pp. 3–19, Feb. 1989.
  • H. El-Kishky and R. S. Gorur, “Electric potential and field computation along ac HV insulators,” IEEE Trans. Dielectr.Elect.Insul., vol. 1, no. 6, pp. 982–990, Dec. 1994.
  • V. Cingoski, K. Kaneda, H. Yamashita, and N. Kowata, “Inverse shape optimization using dynamically adjustable genetic algorithms,” IEEETrans. Energy Convers., vol. 14, no. 3, pp. 661–666, Sep. 1999.
  • R. Hinterding, H. Gieleski, and T. C. Peachey, “The nature of mutation in genetic algorithm,” in Proc. 6th Int. Conf. Genetic Algorithms, Jul.1995, pp. 65–72.
  • W. Chen, H. Yang, and H. Huang, “Contour Optimization of Suspension Insulators Using Dynamically Adjustable Genetic Algorithms,” IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 1220– 1228, Jul. 2010.
  • O. W. Andersen, “Finite element solution of complex potential electric fields,” IEEE Trans. Power App. Syst., vol. PAS-96, no. 4, pp.1156– 1161, Jul./Aug. 1977.
  • MATLAB PDE Toolbox User’s Guide, Version 7.6, 2008.
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “Robust Fractional order PI Controller for Switching Systems,” in: Proc. the 5th Symp. on. Fractional Differentiation and its Applications (FDA'2012), Hohai University, 2012.
  • Y.I. Neimark, “D-decomposition of the space of quasi-polynomials (on the stability of linearized distributive systems),” American Mathematical Society Translations, vol. 102, pp. 95-131, 1973.
  • D. Liberzon, ve A.S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Systems Magazine, vol. 19, pp. 59–70,
  • S.H. HosseinNia, I. Tejado, B.M. Vinagre, “A method for the design of robust controllers ensuring the quadratic stability for switching systems,” J. of Vibration and Control, vol. 20, no. 7, pp. 1085-1098, 2014.
  • I. Podlubny, “Fractional Order Systems and PID Controllers,” IEEE  Trans. on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
  • J. Hwang, J.-F. Leu, and S.-Y. Tsay, “A note on time-domain simulation of feedback fractional-order systems,” IEEE Trans. on Automatic Control, vol. 47, no. 4, pp. 625-631, 2002.
  • J. Ackermann, D. Kaesbauer, “Design of robust PID controllers,” in: Proc. the European Control Conference, pp. 522-527, 2001.
  • M.-T. Ho, A. Datta, and S.P. Bhattacharyya, “A new approach to feedback stabilization,” in: Proc. The 35th Conf. on Decision and Control, Kobe, Japan, 1996.
  • İ. Işık, and S.E. Hamamci, "Anahtarlamalı Sistemleri Kararlı Yapan PI Kontrolör Setinin Hesabı," in: Proc. the TOK 2013 Turkish Automatic Control National Meeting, Malatya, Turkey, 2013, (in Turkish).
  • S.Şeker, E.Ayaz, (2003). A Reliability Model for Induction Motor Ball Bearing Degradation. Electric Power Components & Systems. 31 (7), pp.639-652.
  • S.Şeker, E.Ayaz, (2002). A Study on Condition Monitoring for Induction Motors Under the Accelerated Aging Processes. IEEE Power Engineering Review. 22 (7), pp.35-37.
  • S.Şeker, E.Ayaz, (2003). Feature extraction related to bearing damage in electric motors by wavelet analysis. Journal of the Franklin Institute. 340 (2), pp.125-134.
  • E.Ayaz, S.Şeker, E.Türkcan, B.Barutçu, Combination Of Spectral And Multi-Resolution Wavelet Analysis For Fault Detection In Electric Motors. ELECO’2003, Third International Conference on Electrical and Electronics Engineering. Bursa, Turkey, 3-7 December 2003, pp.94-98.
  • E.Ayaz, A.Öztürk, S.Şeker, B.R.Upadhyaya, (2009). Fault detection based on continuous wavelet transform and sensor fusion in electric motors. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 28 (2), pp.454- 470.
  • E.Ayaz, (2014). Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors. Journal of Vibroengineering. 16 (5), pp.2130-2138.
  • C.C.Wang, Y.Kang, P.C.Shen, Y.P.Chang, Y.L.Chung, (2010). Applications of fault diagnosis in rotating machinery by using time series analysis with neural network. Expert Systems with Applications. (37), pp.1696–1702.
  • M.S.Yilmaz, E.Ayaz, Adaptive Neuro-Fuzzy Inference System for Bearing Fault Detection in Induction Motors Using Temperature, Current, Vibation Data. EUROCON 2009-International IEEE Conference. Saint-Petersburg, Russia, May 18-23, 2009.
  • N.T.Nguyen, H.H.Lee, Bearing fault diagnosis using adaptive network based fuzzy inference system. International Symposium on Electrical & Electronics Engineering. Vietnam, 24- 25 October 2007.
  • M.S.Ballal, Z.J.Khan, H.M.Suryawanshi, R.L.Sonolikar, (2007). Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Transactions on Industrial Electronics. 54 (1).
  • E.Ayaz, M.Uçar, S.Şeker, B.R.Upadhyaya, (2009). Neuro-detector based on coherence analysis for stator insulation in electric motors. Electric Power Components and Systems. 37 (5), pp.533-546.
  • V.S.Vaseghi, (1996) Advanced signal processing and digital noise reduction, New York: John Wiley.
  • T.K.Moon, W.C.Stirling, (1999) Mathematical Methods and Algorithms for Signal Processing, Prentice Hall.
  • S.Qian, D.Chen, (1996) The joint Time -Frequency Analysis-Methods and Applications. Englewood Cliffs, NJ: Prentice-Hall.
  • I. Daubechies, (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36 (5) pp.961-1005.
  • A.Papoulis, (1987) Probability, Random Variables and Stochastic Processes. McGraw Hill International Edition, 5th printing, Singapore.
  • M.H.Hayes, (1996) Statistical Digital Signal Processing and Modeling. John Wiley&Sons, Inc.
  • L.H.Tsoukalas, R.E.Uhrig, (1997) Fuzzy and neural approaches in engineering. New York: Wiley.
  • J.S.R.Jang, (1993). Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3).