Yeni bir manyetik fırlatıcı tasarımı ve analizi: Bir ANSYS Maxwell uygulaması

Bu çalışmada herhangi bir mekanik itici kullanmadan halka ve silindirik şeklindeki sabit mıknatıslardan oluşturulmuş yeni bir manyetik fırlatıcı tasarımı önerilmiştir. Tasarımda önce iki halka mıknatıs kullanılmış daha sonra her seferinde bir halka mıknatıs ilave edilerek fırlatıcı boyu değiştirilmiştir. Farklı boylardaki fırlatıcı tasarımlarında halka mıknatıslar arası mesafe sabit değerde arttırılmış ve fırlatılacak mıknatıs merminin kesiti de değişken tutulmuştur. ANSYS Maxwell simülasyon program kullanılarak oluşturulan boyları farklı her bir fırlatıcı tasarımı için mıknatıs mermiye uygulanan manyetik kuvvetin konuma göre değişimleri analiz sonrasında belirlenmiştir. Böylece mermi kesiti değişiminin ve fırlatıcı boyunun sabit kademelerle arttırılmasının manyetik kuvvete olan etkileri bulunmuştur. Ayrıca mermiye etkiyen manyetik kuvvette etkin rol oynayan halka mıknatıslar yerine bobin kullanılması durumunda bobin ile ilgili değişkenlerin belirlenmesine de çalışılmıştır. Böylece bobine verilecek değişken akıma göre itici kuvvetin de değiştirilebilir olması sağlanabilmiştir. Makalede fırlatıcı tasarımlarının ANSYS Maxwell programıyla oluşturulması ve elde edilen sonuçlar ayrıntılı olarak tartışılmıştır.

A new magnetic launcher design and analysis: An ANSYS Maxwell application

In this study, a new magnetic launcher design consisting of ring and cylindrical permanent magnets without using any mechanical propellants is proposed. In the design, first two ring magnets were used, then one ring magnet was added each time, and the launcher length was changed. In launcher designs of different lengths, the distance between the ring magnets has been increased at a constant value and the cross section of the magnet bullet to be launched has been kept variable. The variations of the magnetic force applied to the magnet bullet according to the position were determined after the analysis for each launcher design of different sizes created by using the ANSYS Maxwell simulation program. Thus, the effects of changing the bullet cross-section and increasing the launcher length by constant steps on the magnetic force were found. In addition, in the case of using coils instead of ring magnets, which play an active role in the magnetic force acting on the bullet, it has also been tried to determine the variables related to the coil. Thus, it has been ensured that the driving force can be changed according to the variable current to be given to the coil. In the article, the creation of launcher designs with the ANSYS Maxwell program and the results obtained are discussed in detail.

___

  • Luo, W., Wang, Y., Gui, Z., Yan, Z., & Chen, W., Connection pattern research and experimental realization of single stage multipole field electromagnetic launcher, IEEE Transactions on Plasma Science, 41(11), 3173-3179, (2013), https://doi.org/10.1109/TPS.2013.2281240.
  • Yuan, W., Yan, P., Sun, Y., Li, M., Liu, C., Li, J., ... & He, J., Design and testing of a two-turn electromagnetic launcher. IEEE Transactions on Plasma Science, 39(1), 198-202, (2010), https://doi.org/10.1109/TPS.2010.2060499.
  • McNab, I. R., Early electric gun research. IEEE Transactions on Magnetics, 35(1), 250-261, (1999), https://doi.org/10.1109/20.738413.
  • McNab, I. R., Stefani, F., Crawford, M., Erengil, M., Persad, C., Satapathy, S., ... & Dampier, C., Development of a naval railgun, IEEE Transactions on Magnetics, 41(1), 206-210, (2005), https://doi.org/10.1109/TMAG.2004.839285.
  • Mongeau, P., & Williams, F., Helical rail glider launcher, IEEE Transactions on Magnetics, 18(1), 190-193, (1982), https://doi.org/10.1109/TMAG.1982.1061773.
  • Engel, T. G., Nunnally, W. C., & Neri, J. M., High-efficiency, medium-caliber helical coil electromagnetic launcher, IEEE Transactions on Magnetics, 41(11), 4299-4303, (2005), https://doi.org/10.1109/TMAG.2005.857900.
  • Skurdal, B. D., & Gaigler, R. L., Multimission electromagnetic launcher, IEEE Transactions on Magnetics, 45(1), 458-461, (2009), https://doi.org/10.1109/TMAG.2008.2008551.
  • Slade, G. W., A simple unified physical model for a reluctance accelerator. IEEE Transactions on Magnetics, 41(11), 4270-4276, (2005), https://doi.org/10.1109/TMAG.2005.856320.
  • Fair, H. D., Advances in electromagnetic launch science and technology and its applications, IEEE Transactions on Magnetics, 45(1), 225-230, (2009), https://doi.org/10.1109/TMAG.2008.2008612.
  • Fair, H. D., Electromagnetic launch science and technology in the United States enters a new era, IEEE Transactions on Magnetics, 41(1), 158-164, (2005), https://doi.org/10.1109/TMAG.2004.838744.
  • McNab, I. R., Progress on hypervelocity railgun research for launch to space, In 2008 14th Symposium on Electromagnetic Launch Technology, (pp. 1-8), (2008), IEEE. https://doi.org/10.1109/ELT.2008.65.
  • Upshaw, J. L., & Kajs, J. P., Micrometeoroid impact simulations using a railgun electromagnetic accelerator, IEEE Transactions on Magnetics, 27(1), 607-610, (1991), https://doi.org/10.1109/20.101103.
  • Engel, T. G., Timpson, E. J., & Veracka, M. J., Demonstration of a reversible helical electromagnetic launcher and its use as an electronically programmable mechanical shock tester, IEEE Transactions on Plasma Science, 43(5), 1266-1270, (2015), https://doi.org/10.1109/TPS.2015.2417056.
  • Engel, T. G., Neri, J. M., & Veracka, M. J., The maximum theoretical efficiency of constant inductance gradient electromagnetic launchers, IEEE Transactions on Plasma Science, 37(4), 608-614, (2009), https://doi.org/10.1109/TPS.2009.2014379.
  • Yang, D., Liu, Z., Li-Jia, Y., Zhi, S., Jian-Ming, O., & Ya-Qin, J., Design and realization of a novel helical coil electromagnetic launcher, IEEE Transactions on Plasma Science, 41(5), 1100-1103, (2013), https://doi.org/10.1109/TPS.2013.2251672.
  • Stankevič, T., Schneider, M., & Balevičius, S., Magnetic diffusion inside the rails of an electromagnetic launcher: Experimental and numerical studies, IEEE Transactions on Plasma Science, 41(10), 2790-2795, (2013), https://doi.org/10.1109/TPS.2013.2255627.
  • Schneider, M., & Schneider, R., Measurement of the current distribution between multiple brush armatures during launch. In 2008 14th Symposium on Electromagnetic Launch Technology, IEEE, (pp. 1-6), (2008), https://doi.org/10.1109/ELT.2008.56.
  • Bengui, Z., Yanjie, C., Jie, W., Huijin, W., & Xuehui, C., Magnetic-structural coupling analysis of armature in induction coilgun, IEEE Transactions on Plasma Science, 39(1), 65-70, (2010), https://doi.org/10.1109/TPS.2010.2077742.
  • Coramik, M., Citak, H., Bicakci, S., Gunes, H., Aydin, Y. and Ege, Y., Studies to Increase Barrel Exit Velocity for Four-Stage Coil-Gun, IEEE Transactions on Plasma Science, 48(7), 2618-2627, (2020), https://doi.org/10.1109/TPS.2020.2999110.
  • Citak, H., Ege, Y. and Coramik, M. Design and Optimization of Delphi-Based Electromagnetic Coilgun, IEEE Transactions on Plasma Science, 47(5), 2186-2196, (2019), https://doi.org/10.1109/TPS.2019.2904515.
  • Çetin, O., Özbay, H., Dalcalı, A. and Temurtaş, F., An Experimental Study on Sensorless Determination of the Projectile Position by Artificial Neural Network in Magnetic Launcher Systems, IEEE Transactions on Plasma Science, 49(12), 3970-3979, (2021), https://doi.org/10.1109/TPS.2021.3123064.
  • Kong, L., Li, H., Zhao, B., Gao, W., Zhang, P. and Hu, C., Multistage Reluctance Coil Launcher With Residual Energy Recovery and Utilization Mode, IEEE Transactions on Plasma Science, Early Access, https://doi.org/10.1109/TPS.2023.3252526.