Türk sofralık yeşil zeytinlerin antioksidan özellikleri üzerine İspanyol yöntemi ile işlemenin etkisi

Akhisar Bölgesi Türkiye’den hasat edilen üç Türk zeytin çeşidi (Domat, Edremit, Gemlik) ile gerçekleştirilen bu çalışmanın amacı, İspanyol Yöntemi ile sofralık zeytine işlemenin toplam fenolik madde ve antioksidan kapasiteye etkisini belirlemektir. Zeytin ekstraktlarının toplam fenol içeriği Folin-Ciocalteu yöntemi ile, antioksidan kapasite ise ferric tiyosiyanat indirgeme kapasitesi ve hidrojen peroksit giderme kapasitesi yöntemleri ile belirlenmiştir. Çizilmiş ve çizilmemiş zeytinler salamura değişimi ((6 % (w/v) NaCl) ve kontrol örneği olarak alkali (1% (w/v) NaOH) uygulaması ile acılık giderme işlemine tabi tutulmuştur. Alkali ile acılık giderme işlemi oleuropein miktarlarında % 78 oranında azalmaya neden olmakla birlikte sırasıyla Edremit, Domat ve Gemlik çeşitlerinin toplam fenolik madde içeriklerinde % 70.51, % 70.47 and % 50.44 düzeylerinde azalma görülmüştür.

Influence of Spanish style processing on antioxidant properties of Turkish green table olives

The study was performed on three Turkish olive cultivars from Akhisar region in Turkey (Domat, Edremit, Gemlik) to determine the effect of Spanish style processing on total phenolic compounds and antioxidant capacity. Total polyphenol content was estimated with the Folin–Ciocalteau assay, the antioxidant activity of olive extracts was determined according to the ferric thiocyanate methodand hydrogen peroxide scavenging assay. Scratched and unscratched olive samples were debittered by brine replacement (6 % (w/v) NaCl) and alkaline (1% (w/v) NaOH) treatment as control. Alkali treatment for debittering, was decreased oleuropein amounts 78 %, however, has led to an important loss of total phenolic compounds with a reduction rate of 70.51%, 70.47% and 50.44%, for Edremit, Domat and Gemlik varieties, respectively.

___

  • Ben Othman N., Roblain D., Chammen N., Thonart P., and Hamdi M. Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chemistry. 116, 662–669, (2009).
  • Marsilio, V., Campestre, C., and Lanza, B., Phenolic compounds change during California-style ripe olive processing. Food Chemistry. 74,55-60, (2001).
  • Rice-Evans, C.A., Miller, N.T., Paganga, G., Antioxidant properties of phenoliccompounds. Trends in Plant Science. 2 (4), 152–159, (1996).
  • Ayar-Kayal, H., Urek, R.O., Nakiboğlu, M., & Tarhan, L. Antioxidant Activities of Endemic Sideritis Leptoclada and Mentha Dumetorum Aqueous Extracts Used In Turkey Folk Medicine. Journal of Food Processing and Preservation, 33, 285–295, (2009).
  • Lee, J.M., Chung, H., Chang, P.S., and Lee, J.H., Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH),Food Chemistry. 103, 662– 669, (2007).
  • Visioli, F., Poli, A., and Galli, C., Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews, 22,65–75, (2002).
  • Lai, L.S., Chou, S.T., and Chao, W.W., Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum, Journal of Agricultural and Food Chemistry, 49:963–968, (2001).
  • Gülçin, İ., Büyükokuroğlu, M.E. and Oktay, M., On the in vitro antioxidant properties of melatonin, Journal of Pineal Research, 33, 167–171, (2006a).
  • Miller, N. J., Diplock, A. T., and Rice-Evans, C.A., 1995. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice in storage.Journal of Agricultural and Food Chemistry, 43, 1794–1801, (1995).
  • Pereira, J.A., Pereira, A.P.G., Ferreira, I. C. F. R., Valentao, P., Andrade, P. B., Seabra, Estevinho, R.L., and Bento, A., 2006. Table olives from Portugal: Phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agriculture and Food Chemistry, 54, 8425–8431, (2006).
  • Uccella, N., 2000. Olive biophenols: novel ethnic and technological approach. Trends in Food Science and Technology. 11,328–339, (2000).
  • Bouzaziz, M., Chamkha, M., and Sayadı S., Comparative Study on Phenolic Content and Antioxidant Activity during Maturation of the Olive Cultivar Chemlali from Tunisia. Journal of Agriculture and Food Chemistry, 52,5476-5481, (2004).
  • Patumi, M., d_Andria, R., Marsilio, V., Fontanazza, G., Morelli, G., and Lanza, B., Olive and olive oil quality after intensive monoclone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes. Food Chemistry, 77, 27–34, (2002).
  • Bianchi G., Lipids and phenols in table olives. European Journal of Lipid Science and Technology. 105, 229–242, (2003).
  • Blekas G, Vassilakis C, Harizanis C, Tsimidou M, Boskou D-G., Biophenols in table olives. Journal of Agricultural and Food Chemistry, 50, 3688–3692, (2002).
  • Romero, C., Garcı´a, P., Brenes, M.; Garcı´a, A., and Garrido, A., 2002. Phenolic compounds in natural black Spanish olive varieties. European Food Research and Technology, 215, 489-496, (2002).
  • Boskou G, Fotini N, Salta Chrysostomou S, Mylona A, Chiou A, Andrikopoulos NK. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chemistry. 94, 558–564, (2004).
  • Hui, Y.H., Barta, J., Cano, M.P., Drake, S.R. Gusek, T.W., Sidhu, J.S., and Sinha, N., 2006. Olive processing. Iowa, USA: Blackwell publishing. 26, 491–517, (2006).
  • Romero, C., Brenes, M., Yousfi, K.; Garcia, P., Garcia, A., and Garrido, A., Effect of cultivar and processing method on the contents of polyphenols in table olives. J. Agric. Food Chemistry, 52, 479–484, (2004).
  • Gulcın, I., Elias, S.R., and Gepdiremen, A., Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.), European Food Research and Technology, 223: 759–767, (2006b).
  • Ruch, R.J., Cheng, S.J., and Klaunig, J.E., Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis 10, 1003–1008, 1989.
  • Singleton , V.,L., Orthofer, R., Ramuela -Raventós,R.M., Ester, P., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178, 1999.
  • Kachouri, F., Ksontini, H., Kraiem, M., Setti, K., Mechmeche, M. and Hamdi, M., Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds, Journal of Food Science and Technology, 52(12): 7924–7933, (2015).
  • Saura-Calixto, F., and Gonii, I., 2006. Antioxidant capacity of the Spanish Mediterranean diet. Food Chemistry, 94: 442–447, (2006).
  • Ben Othman, N., Roblain, D., Thonart, P., and Hamdi, M., Tunisian table olivephenolic compounds and their antioxidant capacity. Journal of Food Science, 73, 4,235–240, (2008).
  • Soler-Rivas, C., Espı ´n, J. C., Wichers, H. J., 2000. Oleuropein and related compounds. Journal of the Science of Food and Agriculture. 80: 1013–1023.
  • Capozzi, F., Piperno, A., and Uccella, N., Oleuropein site selective hydrolysis by technomimetic NMR experiments. Journal of Agricultural and Food Chemistry 48,1623-1629, 2000.
  • Yıldız, G., Uylaşer, V. 2015. Profile and total content of phenolics and antioxidant activity of commercial table olives from Turkey. Quality Assurance and Safety of Crops & Foods, 5, 635 – 642, (2015).
  • Piscopo A, De Bruno A, Zappia A, Poiana M., Antioxidant activity of dried green olives (Caroleacv.). LWT-Food Science and Technology. 58, 49–54, (2014).
  • Mettouchia, S., Sacchib, R., Ould Moussaa, Z.E.D., Paduanob, A., Savaresec, M. and Tamendjaria, A.,Effect of Spanish style processing on the phenolic compounds and antioxidant activity of Algerian green table olives, Grasas Y Aseites, 67 (1), e114, (2016).
  • Kountouri, A.M., Mylona, A., Kaliora, A.C., and Aandrikopoulos, N.K., Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): Impact on plasma antioxidant status in humans. Phytomedcine, 14, 659–667, (2007).
  • Hatano, T., Edamatsu, R., Mori, A., Fujita, Y. and Yasuhara, E., Effect of interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical and on DPPH radical. Chemical and Pharmaceutical Bulletin, 37,2016–2021, (1989).
  • Gorinsteina, S., Martin-Bellosob, O., Katricha, E., Lojekc, A., Ćĭź, M., Gligelmo-Miguelb, N., Haruenkitd, R., Parke, Y.S., Jungf, S.T., and Trakhtenbergg, S., Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. Journal of Nutritional Biochemistry,14, 154–159, (2003).
  • Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., and Qian, M., Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry50, 1619–1624, (2002).