Geleneksel ve mikrodalga ısıtma koşullarında yeni imidazo[1,2-a]pirimidin türevi schiff bazlarının hazırlanması

Bu çalışmada yeni imidazo[1,2-a]pirimidin türevli schiff bazları, imin oluşum reaksiyonu ile sentezlenmiş ve FT-IR, 1H NMR, 13C NMR, MS gibi çeşitli spektral analizler ile yapıları aydınlatılmıştır. Geleneksel ısıtma ile gerçekleştirilen reaksiyonlara ek olarak C=N oluşum basamağına mikrodalga-destekli sentez de uygulanmıştır. Reaksiyonlar, magnezyum sülfatın kurutucu olarak kullanıldığı, toluen içerisinde kaynama sıcaklığı koşullarında yürütülmüştür. Son ürünler, geleneksel ısıtma koşullarında 10-36 sa reaksiyon sürelerinde orta-iyi verimlerle elde edilirken, mikrodalga ısıtma koşullarında 45-120 dk reaksiyon sürelerinde iyi verimlerle sentezlenmiştir. Sonuçlar göstermiştir ki, organik moleküllerin sentezinde, iyi bir yeşil proses olarak bilinen mikrodalga-destekli sentez, bizim çalışmamızda daha kısa reaksiyon süreleri ve yüksek verimler elde edilebilmesini sağlamıştır.

Preparation of novel imidazo[1,2-a]pyrimidine derived schiff bases at conventional and microwave heating conditions

In this study, novel imidazo[1,2-a]pyrimidine derived schiff bases were synthesized via imine formation reaction and characterized with various spectral analysis such as FT-IR, 1H NMR, 13C NMR and MS. In addition to conventional heating reactions, microwave-assisted synthesis was applied to the C=N bond formation step. The reactions were carried out at reflux temperature in toluene and magnesium sulfate as drying agent. While final products were obtained at 10-36 h reaction times with moderate to good yields at conventional heating conditions, synthesized at 45-120 min reaction times with good yields at microwave heating conditions. Results showed that microwave-assisted synthesis which is a well-known green process for the synthesizing organic molecules provides to obtain shorter reaction times and higher yields in our study.

___

  • Sruthi, K., Sumakanth, M., Mahendra Kumar, C. B. and Naresh, K., Nitrogen bridged imidazo pyrimidine acetamides: synthesis, molecular docking, toxicity prediction and anti-proliferative studies, European Journal of Biomedical and Pharmaceutical Sciences, 4, 5, 313-320, (2017).
  • Al-Lami, N., Amer, Z. and Ali, R. A., Preparation, characterization and biological activity of new derivatives of 2-biphenyl-3-aminomethylimidazo(1,2-a)pyrimidine, Journal of Pharmaceutical Sciences and Research, 10, 12, 3344-3350, (2018).
  • Mantipallya, M., Gangireddya, M. R., Gundlaa, R., Badavath, V. N., Mandhaa, S. R. and Maddipatia, V. C., Rational design, molecular docking and synthesis of novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives as potent cytotoxic and antimicrobial agents, Bioorganic & Medicinal Chemistry Letters, 29, 2248-2253, (2019).
  • Goel, R., Luxami V. and Paul, K., Synthetic approaches and functionalizations of imidazo[1,2-a]pyrimidines: an overview of the decade, RSC Advances, 5, 81608-81637, (2015).
  • Velázquez-Olvera, S., Salgado-Zamora, H., Velázquez-Ponce, M., Campos-Aldrete, E., Reyes-Arellano, A. and Pérez-González, C., Fluorescent property of 3-hydroxymethyl imidazo[1,2-a]pyridine and pyrimidine derivatives, Chemistry Central Journal, 6, 83, 1-9, (2012).
  • Brodowska, K. and Łodyga-Chruścıńska, E. Schiff bases-interesting range of applications in various fields of science, Chemik, 68, 2, 129-134, (2014).
  • Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar, V. and Kim, K., A review of the applications of Schiff bases as optical chemical sensors, Trends in Analytical Chemistry, 116, 74-91, (2019).
  • Srıdevı, G., Arul Antony, S. and Angayarkanı, R., Schiff base metal complexes as anticancer agents, Asian Journal of Chemistry, 31, 3, 493-504, (2019).
  • Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y. and Hashmi, A. A., Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy, Medicinal Chemistry Communication, 9, 409-436, (2018).
  • Zhang, J., Xu L. and Wong, W., Energy materials based on metal Schiff base complexes, Coordination Chemistry Reviews, 355, 180-198, (2018).
  • Collados, J. F., Toledano, E., Guijarro, D. and Yus, M., Microwave-assisted solvent-free synthesis of enantiomerically pure n-(tert-butylsulfinyl)imines, Journal of Organic Chemistry, 77, 5744-5750, (2012).
  • Elgemeie, G. H. and Masoud, D. M., Recent trends in microwave assisted synthesis of fluorescent dyes, Pigment & Resin Technology, 45, 6 381-407, (2016).
  • Karnik, K. S., Sarkate, A. P., Jagtap S. D. and Wakte, P. S., Copper catalyzed ligand free microwave mediated synthesis of α-ketoamides from aromatic ketones, Current Microwave Chemistry, 5, 39-45, (2018).
  • Dyab, A. K. F. and Sadek, K. U., Microwave assisted one-pot green synthesis of cinnoline derivatives inside natural sporopollenin microcapsules, RSC Advances, 8, 23241-23251, (2018).
  • Shi, Z. and Zhao, Z. Microwave irradiation synthesis of novel indole triazole Schiff base fluorescent probe for Al3+ ion, Inorganica Chimica Acta, 498, 119135, (2019).
  • Saadaoui, I., Krichen, F., Salah, B. B., Mansour, R. B., Miled, N., Bougatef, A. and Kossentini, M., Design, synthesis and biological evaluation of Schiff bases of 4-amino-1,2,4-triazole derivatives as potent angiotensin converting enzyme inhibitors and antioxidant activities, Journal of Molecular Structure, 1180, 344-354, (2019).
  • Canton-Díaz, A. M., Munoz-Flores, B. M., Moggio, I., Arias, E., Turlakov, G., Angel-Mosqueda, C. D., Ramirez-Montesb, P. I. and Jimenez-Perez, V. M., Molecular structures, DFT studies and their photophysical properties in solution and solid state. Microwave-assisted multicomponent synthesis of organotin bearing Schiff bases, Journal of Molecular Structure, 1180, 642-650, (2019).
  • Nguyen, T. B., Nguyen, L. A., Corbin, M., Retailleau, P., Ermolenko, L. and Al-Mourabit, A., Toward the synthesis of sceptrin and benzosceptrin: solvent effect in stereo- and regioselective [2+2] photodimerization and easy access to the fully substituted benzobutane, European Journal of Organic Chemistry, 5861-5868, (2018).
  • Kethireddy, S., Eppakayala, L. and Maringanti, T. C., Synthesis and antibacterial activity of novel 5,6,7,8‑tetrahydroimidazo [1,2‑a]pyrimidine‑2‑carbohydrazide derivatives, Chemistry Central Journal, 9, 51, 1-6, (2015).