Bazı Sudan Boyalarının Lineer, Lineer Olmayan Optik Özellikleri ve Kuantum Kimyasal Parametreleri

Bu çalışmada, Sudan III (SIII) [1-({4-[(fenil)diazenil] fenil}diazenil) naftalin-2-ol], Sudan Kırmızı G (SKG) [1-(2-Metoksifenilazo)-2-naftol] ve Sudan Turuncu G (STG) [4(fenilazo)rezorsinol] moleküllerinin polarizabilite (), anizotropi polarizabilite (), taban-durum dipol moment (µ) ve birinci-derece hiperpolarizabilite (β) değerleri HartreeFock (HF) metodu ve Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) metodu ile 3-21G, 631G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6311G(d,p), 6-311G++(d,p) temel setleri kullanılarak incelendi. Ayrıca, EHOMO (en yüksek dolu moleküler orbital enerji), ELUMO (en düşük boş moleküler orbital enerji), HOMOLUMO enerji farkı (ΔE), elektron ilgisi (A), iyonizasyon potansiyeli (I), global sertlik (η), yumuşaklık (σ), elektronegatiflik (χ), kimyasal potansiyel (Pi), global elektrofilik indis (ω) değerleri araştırıldı. Tüm kuantum kimyasal parametreler, genelde, temel setlerin seçiminden bağımsızdır, ve açıkça polarizasyon ve difüz fonksiyonlarının eklenmesinden sonra etkilenmektedir

The linear, nonlinear optical properties and quantum chemical parameters of some sudan dyes

In this study, the polarizability (<α>), the anisotropy of the polarizability (<Δα>), groundstate dipole moment (µ) and the first-order hyperpolarizability (β) of the Sudan III (SIII) [1-({4-[(phenyl)diazenyl] phenyl}diazenyl) naphthalen-2-ol], Sudan Red G (SRG) [1-(2Methoxyphenylazo)-2-naphthol] and Sudan Orange G (SOG) [4-(Phenylazo)resorcinol] are studied at the Hartree-Fock (HF) and Density Functional theory (DFT/B3LYP) levels of the theory with 3-21G, 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6311G, 6-311G(d), 6-311G(d,p), 6-311G++(d,p) basis sets. Also, Eoccupied molecular orbital energy), ELUMO (the lowest unoccupied molecular orbital energy), HOMO-LUMO energy gap (ΔE), electron affinity (A), ionization potential (I), global hardness (η), softness (σ), electronegativity (χ), chemical potential (Pi), global electrophilicity index (ω) are investigated. All quantum chemical parameters, in general, are dependent on the choice of the basis sets, and are clearly influenced after the addition of polarization and diffusion functions

___

  • [1] Huang, H.Y., Shih, Y.C. ve Chen, Y.C., Determining eight colorants in milk beverages by capillary electrophoresis, Journal of Chromatography A, 959, 1- 2, 317-325, (2002).
  • [2] Sádecká, J. ve Polonský, J., Electrophoretic methods in the analysis of beverages, Journal of Chromatography A, 880, 1-2, 243-279, (2000).
  • [3] Ma, M., Luo, X., Chen, B., Su, S. ve Yao, S., Simultaneous determination of water-soluble and fat-soluble synthetic colorants in foodstuff by highperformance liquid chromatography–diode array detection–electrospray mass spectrometry, Journal of Chromatography A, 1103, 1, 170-176, (2006).
  • [4] Calbiani, F., Careri, M., Elviri, L., Mangia, A., Pistarà, L., Zagnoni, I., Development and in-house validation of a liquid chromatography–electrospray– tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products, Journal of Chromatography A, 1042, 1-2, 123-130, (2004).
  • [5] http://en.wikipedia.org/wiki/Sudan_Red_G.
  • [6] Vilarinho, E.C., Fernandes, O.A., Omoto, E., et al., Oil-Soluble Dyes for Marking Spodoptera frugiperda (Lepidoptera: Noctuidae), Journal of Economic Entomology, 99, 6, 2110-2115, (2006).
  • [7] MacDougall, D.B., In Colour in Food-Improving Quality, 21, Woodhead Publishing Limited and CRC Press, Cambridge, UK, (2002) .
  • [8] Kanis, D.R., Ratner, M.A. ve Marks, T.J., Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews, 94, 1, 195-242, (1994).
  • [9] (a) Costa, S.P.G., Griffiths, J., Kirsch, G., et al., Synthesis of thieno[2,3- d]thiazole derived dyes with potential applicationin nonlinear optics, Anales de Quimica International Edition, 94, 4-5, 186-188, (1998). (b) Barachevsky, V.A., Oliveira-Campos, A.M.F., Stebunova, LV, et al., Journal of Science Applied Photographic (Russ.), 47, 4-8, (2002). (c) Raposo, M.M.M., Sousa, A.M.R.C., Fonseca, A.M.C., Kirsch, G., Thienylpyrrole azo dyes: synthesis, solvatochromic and electrochemical properties, Tetrahedron, 61, 34, 8249-8256, (2005
  • [10] Prasad, P.R. ve Williams, D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, 320, Wiley-Interscience Press, New York, (1991).
  • [11] Machado, A.E.H., Neto, N.M.B., Ueno, L.T., et al., Study of the spectroscopic properties and first hyperpolarizabilities of disperse azo dyes derived from 2- amino-5-nitrothiazole, Journal of Photochemistry Photobiology A-Chemistry, 199, 1, 23–33, (2008).
  • [12] He, T. ve Wang C., The study on the nonlinear optical response of Sudan, Optics Communications, 281, 15-16, 4121-4125, (2008).
  • [13] Wang, C.S, Fei, H.S., Yang, Y.Q., et al., Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer, Optics Communications, 159, 1-3, 58-62, (1999).
  • [14] Wang, C., Fei, H., Qiu, Y., et al., Photoinduced birefringence and reversible optical storage in liquid-crystalline azobenzene side-chain polymers, Applied Physics Letters, 74, 1, 19-21, (1999).
  • [15] Towns, A.D., Developments in azo disperse dyes derived from heterocyclic diazo components, Dyes and Pigments, 42, 1, 23-28, (1999).
  • [16] Yesodha, S.K., Sadashiva Pillai, C.K., Tsutsumi, N., Stable polymeric materials for nonlinear optics: a review based on azobenzene systems, Progress in Polymer Science, 29, 1, 45-74, (2004).
  • [17] Astrand, P.O., Sommer-Larsen, P., Hvilsted, S., et al., Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies, Chemical Physics Letters, 325, 1-3, 115-119, (2000).
  • [18] Jeewandara, A.K., Nalin de Silva, KM., Are donor–acceptor self organised aromatic systems NLO (non-linear optical) active?, Journal of Molecular Structure-Theochem, 686, 1-3, 131–136, (2004).
  • [19] Suponitsky, K.Y., Tafur, S, Masunov A.E., Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability, Journal of Chemical Physics, 129, 044109-11, (2008).
  • [20] Avcı, D., Başoğlu A. ve Atalay, Y., Effects of different basis sets and donoracceptor groups on linear and second-order nonlinear optical properties and molecular frontier orbital energies, International Journal of Quantum Chemistry, 111, 1, 130-147, (2011).
  • [21] Dos Santos, H.F., de Oliveira, L.F.C., Dantas, S.O., et al., Quantum mechanical investigation of the tautomerism in the azo dye Sudan III, International Journal of Quantum Chemistry, 80, 4-5, 1076-1086, (2000).
  • [22] Esme, A., Sagdinc, S.G., The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4- (phenylazo) phenyl]azo}-2-naphthalenol], Journal of Molecular Structure, 1048, 185–195, (2013).
  • [23] Salmen, R, Malterud, K.E., Pedersen, B.F., Structures of the Azo Dyes Sudan Red G [1-(2-Methoxyphenylazo)-2-naphthol], C17H14N2O2, and Sudan Yellow (1-Phenylazo-2-naphthol), C16H12N2O, Acta Chemica Scandinavica A, 42, 34- 43, 493-499, (1988).
  • [24] Hehre, W.J., Ditchfield, R., Pople, J.A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, Journal of Computational Chemistry, 56, 2257-2262, (1972).
  • [25] Hariharan, P.C., Pople, J.A., The influence of polarization functions on molecular orbital hydrogenation energies, Theoretica Chimica Acta, 28, 3, 213-222, (1973).
  • [26] Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648-5653, (1993).
  • [27] Stephens, P.J., Devlin, F.J., Chabalowski, C.F., et al., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, http://pubs.acs.org/doi/abs/10.1021/j100096a001Journal of Physical Chemistry, 98, 45, 11623-11627, (1994).
  • [28] Francl, M.M., Pietro, W.J., Hehre, W.J., et al., Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, Journal of Physical Chemistry, 77, 3654-3665, (1982).
  • [29] Clark, T., Chandrasekhar, J., Spitznagel, G.W., et al., Efficient diffuse functionaugmented basis sets for anion calculations. III. The 3-21+G basis set for firstrow elements, Li–F, Journal of Computational Chemistry, 4, 3, 294-301, (http://onlinelibrary.wiley.com/doi/10.1002/jcc.540040303/abstract1983).
  • [30] Krishnan, R., Binkley, J.S., Seeger, R., et al., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, Journal of Chemical Physics, 72, 650-655, (1980).
  • [31] Frisch, M.J., Trucks, G.W, Schlegal, H.B., et al., Gaussian 09, Revision A 11.4, Gaussian Inc., Pittsburgh PA., (2009).
  • [32] Frisch, A., Nielson, A.B. and Holder, A.J., GaussView Users Manual, Gaussian Inc., Pittsburgh, PA, (2000).
  • [33] Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98, 5648, (1993).
  • [34] Lee, C., Yang, W. and Parr, R.G., Development of the Colle-Salvetti conelation energy formula into a functional of the electron density, Physical Review B, 37, 785-789, (1988).
  • [35] Koopmans, T.C., Über die Zuordnung von Wellenfunktionen und Eingenwerten zu den Einzelnen Elektronen Eines Atoms, Physica (Amsterdam), 1, 104-113, (1933).
  • [36] Parr, R.G., Sventpaly, L. and Liu, S., Electrophilicity Index, Journal of American Chemical Society, 121, 1922-1924, (1999).
  • [37] Gomez, B., Likhanova, N.V., Dominguez-Aguilar, M.A., et al., Theoretical Study of a New Group of Corrosion Inhibitors, Journal of Physical Chemistry A, 109, 8950-8957, (2005).
  • [38] Chattaraj, P.K., Sarkar, U., Roy, D.R., Electrophilicity Index, Chemical Reviews, 106, 6, 2065-2091, (2006).
  • [39] Chattaraj, P.K., Chemical Reactivity Theory: A Density Functional View, 610, CRC Press, New York, (2009).
  • [40] Ebenso, E.E., Arslan, T., Kandemirli, F., et al., Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium, International Journal of Quantum Chemistry, 110, 14, 2614-2636, (2010).
  • [41] Hinchliffe, A., Nikolaidi, B. ve Machado, H.J.S., Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules, International Journal of Molecular Sciences, 5, 8, 224-238, (2004).
  • [42] Buckingham, A.D., Permanent and induced molecular moments and long-range intermolecular forces, Advances in Chemical Physics, 12, 107-142, (1967).
  • [43] McLean, A.D. and Yoshimine M., Theory of Molecular Polarizabilities, The Journal of Chemical Physics, 47, 1927-1936, (1967).
  • [44] Lin, C. and Wu, K., Theoretical studies on the nonlinear optical susceptibilities of 3-methoxy-4-hydroxy-benzaldehyde crystal, Chemical Physics Letters, 321,1-2, 83-88, (2000).
  • [45] Abraham, J.P., Sajan, D., Hubert, Joe I.H. and Jayakumar, V.S., Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide, Spectrochimica Acta Part A, 71, 2, 355-367, (2008).
  • [46] Karamanis, P, Pouchan, C. and Maroulis, G., Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations, Physical Review A, 77, 013201-013208, (2008).
  • [47] Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H. and Mlayah, A., Structural, vibrational and theoretical studies of l-histidine bromide, Journal of Molecular Structure, 888, 1-3, 180-186, (2008).
  • [48] Abbott, L.C., Batchelor, S.N., Oakes, J., et al., Experimental and Computational Studies of Structure and Bonding in Parent and Reduced Forms of the Azo Dye Orange II, The Journal of Physical Chemistry A, 109, 12, 2894-2905, (2005).
  • [49] Bouwstra, J.A., Schouten, A. and Kroon, J., Structural studies of the system transazobenzene/trans-stilbene. I. A reinvestigation of the disorder in the crystal structure of trans-azobenzene, C12H10N2, Acta Crystallographica Section C, 39, 8, 1121-1123, (1983).
  • [50] Almeida, M.R., Stephani, R., Dos Santos, H.F. and de Oliveira, L.F.C., Spectroscopic and Theoretical Study of the “Azo”-Dye E124 in Condensate Phase: Evidence of a Dominant Hydrazo Form, The Journal of Physical Chemistry A, 114, 1, 526-534, (2010). [51] Silva, J.R., de Souza, N.C., Fernandes, V.C., et al., Langmuir–Blodgett films of diazobenzene molecules, Journal of Colloid and Interface Science, 327, 1, 31- 35, (2008).
  • [52] Masoud, M.S., Awad, M.K., Shaker, M.A., et al., The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel, Corrosion Science, 52, 7, 2387-2396, (2010).
  • [53] Boshra, A., Jadidi, S., Monajjemi, M., et al., Journal of Nanostructure in Chemistry, 2, 98-109, (2011).
  • [54] Ghanadzadeh, A., Ghanadzadeh, H., Ghasmi, G., On the molecular structure and aggregative properties of Sudan dyes in the anisotropic host, Journal of Molecular Liquids, 88, 2-3, 299-308, (2000).
  • [55] Sıdır, Y.G., Sıdır, I., Berber, H. and Taşal, E., An experimental study on relationship between hammett substituent constant and electronic absorption wavelength of some azo dyes, Journal of Science and Technology, 1, 7-11, (2011).
  • [56] Oliva, M.M., Casado, J., Raposo, M.M.M., et al., Structure-Property Relationships in Push-Pull Amino/Cyanovinyl End-Capped Oligothiophenes: Quantum Chemical and Experimental Studies. The Journal of Organic Chemistry, 71, 20, 7509-7520, (2006).
  • [57] Premakumari, J., Allan Gnana Roy, G., Antony Muthu Prabhu, A., et al., Effect of Solvents and pH on β-Cyclodextrin Inclusion Complexation of 2,4- Dihydroxyazobenzene and 4-Hydroxyazobenzene, Journal of Solution Chemistry, 40, 327-347, (2011).
  • [58] Hinchliffe, A. and Soscun Machado, H.J., Ab initio studies of the dipole polarizabilities of conjugated molecules: Part 3. One electron properties, dipole polarizability and first hyperpolarizability of quinoline and isoquinoline, Journal of Molecular Structure (Theochem), 312, 1, 57-67, (1994).
  • [59] Nalwa, H.S., in Handbook of Advanced Electronic and Photonic Materials and Device in Champagne, B. and Kirtman, B., Academic Press, 63-126, San Diego, (2001).
  • [60] Luis, J.M., Champagne, B. and Kirtman, B., Calculation of static zero-point vibrational averaging corrections and other vibrational curvature contributions to polarizabilities and hyperpolarizabilities using field-induced coordinates, International Journal of Quantum Chemistry, 80, 3, 471-479, (2000).
  • [61] Millefiori, S. and Alparone, A., Theoretical determination of the vibrational and electronic (hyper)polarizabilities of C4H4X (X=O, S, Se, Te) heterocycles, Physical Chemistry Chemical Physics, 2, 11, 2495-2501, (2000).
  • [62] Jacquemin, D., Champagne, B., Hattig, C., Correlated frequency-dependent electronic first hyperpolarizability of small push–pull conjugated chains, Chemical Physics Letters, 319, 3-4, 327-334, (2000).
  • [63] Champagne, B., Élaboration de Méthodes de Chimie Quantique pour L'evaluation des Hyperpolarisabilités Vibrationnelles—Conséquences pour L'optique Non Linéaire, PUN, Namur: 2001, pp. 68-9.
  • [64] Torrent-Sucarrat, M., Solà, M., Duran, M., et al., Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules, Chemical Physics, 118, 711-719, (2003).
  • [65] Lee, I.S., Shin, D.M., Yoon, Y., et al., Synthesis and non-linear optical properties of (alkyne)dicobalt octacarbonyl complexes and their substitution derivatives, Inorganica Chimica Acta, 343, 41-50, (2003).
  • [66] Mang, C., Wu, K., Zhang, M., et al., First-principles study on second-order optical nonlinearity of some ferrocenyl complexes, Journal of Molecular Structure (Theochem), 674, 77-82, (2004).