FOTO-AKTİF DEZENFEKSİYONDA KULLANILAN FARKLI FOTOSENSİTİZÖR MADDELERİN ANTİMİKROBİYAL ETKİSİNİN EX VİVO OLARAK İNCELENMESİ

 Amaç: Çalışmamızın amacı foto-aktif dezenfeksiyon tekniği ile kullanılan güncel fotosensitizörlerin, antimikrobiyal aktivitelerinin kavite dezenfeksiyonunda altın standart olarak kabul edilen klorheksidin diglukonat ile karşılaştırılmasıdır. Gereç ve yöntem: Çalışmamızda üç farklı fotosensitizör (hiperisin, oligomerik proantosiyanidin, rumex cristatus DC.) iki farklı ışık kaynağı ile aktive edildi (Elipar S10 LED™, Fotosan 630 LAD®) ve sonuçlar klorheksidin diglukonat ile karşılaştırıldı. Çalışmada çekimi yapılan 70 adet süt dişinden tedavi öncesi ve sonrası dentin örnekleri alındı ve hazır agarlara ekilerek inkübasyon sonrası antimikrobiyal etkisi değerlendirildi. Bulgular: Hiperisin ve rumex cristatus DC.’nin fotosensitizör olarak antimikrobiyal etkisi klorheksidine göre daha yüksek ancak, oligomerik proantosiyanidinin daha düşük bulundu. Fotosensitizör maddelerin foto-aktivasyonu için kullanılan ışık kaynaklarından LED ışık cihazı daha başarılı sonuçlar verdi. Sonuç: Çalışmamızın sonucuna göre fotosensitizör olarak hiperisin ve rumex cristatus DC.’nin LED ışık cihazı ile aktivasyonunun kavite dezenfeksiyonunda kullanılabileceği düşünülmektedir

___

  • 1] Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry—a review. International Dental Journal. 2000;50(1): 1-12.
  • [2] Lima JP, Sampaio de Melo MA, Borges F, Teixeira AH, Steiner-Oliveira C, Nobre dos Santos M, Zanin IC. Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an in situ model of dentine caries. European Journal of Oral Sciences. 2009;117(5): 568-574.
  • [3] Karaarslan EŞ, Altıntaş S, Cebe AGMA, Üşümez A. Işıkla aktive edilen dezenfeksiyon işlemi uygulanmış kompozit restorasyonlarda mikrosızıntının değerlendirilmesi. Hacettepe Diş Hekimliği Fakültesi Dergisi. 2010;34(1): 2-9.
  • [4] Emilson CG. Potential efficacy of chlorhexidine against mutans streptococci and human dental caries. Journal of Dental Research. 1994;73(3): 682-691.
  • [5] Shafiei F, Fekrazad R, Kiomarsi N, Shafiei E. Bond strength of two resin cements to dentin after disinfection pretreatment: effects of Er, Cr: YSGG laser compared with chemical antibacterial agent. Photomedicine and Laser Surgery. 2013;31(5): 206-211.
  • [6] Audus KL, Tavakoli-Saberi MR, Zheng H, Boyce EN. Chlorhexidine effects on membrane lipid domains of human buccal epithelial cells. Journal of Dental Research. 1992;71: 1298303.
  • [7] Heintze SD, Twetman S. Interdental mutans streptococci suppression in vivo: a comparison of different chlorhexidine regimens in relation to restorative material. American Journal of Dentistry. 2002;15: 103-8.
  • [8] Jurczyszyn K, Zıółkowskı P, Gerber H, Osıecka BJ. Potentiality of photodynamic therapy in dentistry. Dental and Medicinal Problems. 2007;44(2): 255-8. [9] Hakimiha N, Khoei F, Bahador A, Fekrazad R. The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources. Journal of Applied Oral Science. 2014;22(2): 80-4.
  • [10] Rajesh S, Koshi E, Philip K, Mohan A. Antimicrobial photodynamic therapy: An overview. Journal of Indian Society of Periodontology. 2011;15(4): 323.
  • [11] Kitanov GM. Hypericin and pseudohypericin in some Hypericum species. Biochemical Systematics and Ecology. 2001;29(2): 171-8.
  • [12] Avato P, Raffo F, Guglielmi G, Vitali C, Rosato A. Extracts from St John’s wort and their antimicrobial activity. Phytotherapy Research. 2004;18(3): 230-2.
  • [13] Lüthi M, Gyenge EB, Engstrüm M, Bredell M, Grätz K, Walt H, Maake C. Hypericin-and mTHPC-mediated photodynamic therapy for the treatment of cariogenic bacteria. Medical Laser Application. 2009;24(4): 227-236.
  • [14] Nakamura K, Shirato M, Ikai H, Kanno T, Sasaki K, Kohno M, Niwano Y. Photoirradiation of proanthocyanidin as a new disinfection technique via reactive oxygen species formation. PloS one. 2013;8(3): e60053.
  • [15] Avci E, Avci GA, Kose DA, Emniyet AA, Suicmez M. In vitro antimicrobial and antioxidant activities and GC/MS analysis of the essential oils of Rumex crispus and Rumex cristatus. Hacettepe Journal of Biology and Chemistry. 2014;42(2): 193-9.
  • [16] Kahraman S, Yanardağ R. Antioxidant activity of ethanolic extract from Rumex cristatus DC. International Journal of Electronics; Mechanical and Mechatronics Engineering. 2012;2(4): 319-326.
  • [17] Konopka K, Goslinski T. Photodynamic therapy in dentistry. Journal of Dental Research.
  • {18] 2007;86(8): 694-707.
  • [19] Nagata JY, Hioka N, Kimura E, Batistela VR, Terada RSS, Graciano AX, Hayacibara MF. Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagnosis and Photodynamic Therapy. 2012;9(2): 122-131.
  • [20] Henne K, Gunesch AP, Walther C, Meyer-Lueckel H, Conrads G, EstevesOliveira M. Analysis of bacterial activity in sound and cariogenic biofilm: A pilot in vivo study. Caries Research. 2016;50(5): 480-8.
  • [21] Berkiten M, Okar I, Berkiten R. In vitro study of the penetration of Streptococcus sanguis and Prevotella intermedia strains into human dentine tubules. Journal of Endodontics. 2000;26: 236–9.
  • [22] Camila de Almeida BG, Simionato MRL, Ramalho KM, Imparato JCP, Pinheiro SL, Luz MA. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. Journal of Biomedical Optics. 2011;16(8). doi088003-088003. Foto-Aktif Dezenfeksiyonda Kullanılan Farklı Fotosensitizör Maddelerin Antimikrobiyal Etkisinin Ex Vivo Olarak İncelenmesi
  • [23] NammourS, Zeinoun T, Bogaerts I, Lamy M, Geerts SO, Saba SB, Limme M. Evaluation of dental pulp temperature rise during photo-activated decontamination (PAD) of caries: an in vitro study. Lasers in Medical Science. 2010;25(5): 651-4.
  • [24] Florez FLE, Del Arco MCG, de Souza Salvador SL, Bagnato VS, de Oliveira Júnior OB. Viability study of antimicrobial photodynamic therapy using curcumin, hypericin and photogem photosensitizers in planktonic cells of Streptococcus mutans. Journal of Dental Sciences. 2015;2: 22-7.
  • [25] Williams JA, Pearson GJ, Colles MJ, Wilson M. The effect of variable energy input from a novel light source on the photoactivated bactericidal action of toluidine blue O on Streptococcus mutans. Caries Research. 2003;37(3): 190-3.
  • [26] Williams JA, Pearson GJ, Colles MJ, Wilson M. The photo-activated antibacterial action of toluidine blue O in a collagen matrix and in carious dentine. Caries Research. 2004;38(6): 530-6.
  • [27] Teixeira AH, Pereira ES, Rodrigues LKA, Saxena D, Duarte S, Zanin ICJ. Effect of photodynamic antimicrobial chemotherapy on in vitro and in situ biofilms. Caries Research. 2012;46(6): 549-554.
  • [28] Tonon CC, Paschoal MA, Correia M, Spolidorio DM, Bagnato VS, Giusti JS, SantosPinto L. Comparative effects of photodynamic therapy mediated by curcumin on standard and clinical isolate of Streptococcus mutans. The Journal of Contemporary Dental Practice. 2015;16(1): 1-6.
  • [29] Gökyar S. Fotodinamik Antimikrobiyal Tedavinin Kompomer Restorasyonların Süt Dişi Dentin Dokusuna Bağlanma Kuvvetine ve Mikrosızıntısına Etkisinin İncelenmesi. Doktora Tezi, 2012, Konya (Tez danışmanı: Doç. Dr. Gül Tosun).
  • [30] Smullen J, Koutsou GA, Foster HA, Zumbé A, Storey DM. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Research. 2007;41(5): 342-9.
  • [31] Swadas M, Dave B, Vyas SM, Shah N. Evaluation and comparison of the antibacterial activity against Streptococcus mutans of grape seed extract at different concentrations with chlorhexidine gluconate: An in vitro study. International Journal of Clinical Pediatric Dentistry. 2016;9(3): 181.