Yapay Sinir Ağları İle Çeyrek Daire Yarıklı Mikroşerit Yama Antenin Rezonans Frekansının Belirlenmesi

Geliştirilen yeni mikroşerit anten geometrilerinde çalışma frekansını doğrudan hesaplayabilecek analitik modeller bulunmadığından çok katmanlı ağ yapısına dayanan yapay sinir ağı (YSA) modelleri çalışma frekansını belirlemek için yaygın olarak kullanılmaktadır. Bu çalışmada çeyrek daire yarıklı mikroşerit antene ait farklı giriş verileri (anten fiziksel parametreleri) için rezonans frekansını elde edilmesini sağlayan çok katmanlı YSA modeli oluşturulmuştur. Bu veriler, antenin rezonans frekansı 1,475-2,45 GHz aralığında olacak şekilde belirlenmiştir. ANSYS HFSS benzetim programı kullanılarak elde edilen 120 farklı anten verisi YSA modelinde eğitim ve test süreçlerinde kullanılmıştır. Geliştirilen YSA modeli ile antenin farklı fiziksel parametreleri için rezonans frekansı elde edilmiştir. Benzetim ve test sonuçları karşılaştırıldığında 40 test verisi için ortalama hata değerinin %0,34 olduğu görülmektedir. Bu sonuçlara göre rezonans frekansının belirlenmesi için çok katmanlı ağ yapısının başarılı bir şekilde kullanılabileceği gösterilmiştir. YSA modelinin oluşturulmasında sınıflandırıcı performans algoritmaları MATLAB yazılımı kullanılarak geliştirilmiştir.

Resonance Frequency Determination of Quarter Circular Slotted Microstrip Patch Antenna using Artificial Neural Networks

Since there are no analytical models that can directly calculate the operating frequency in the newly developed microstrip antenna geometries, artificial neural network (ANN) models based on the multilayer network structure are widely used to obtain the operation frequency. A multilayer ANN model is developed to determine the resonance frequency of a quarter-circular slotted microstrip antenna for various input data (antenna parameters). These data are varied to obtain the resonance frequency of the antenna in the range of 1.475-2.45 GHz. 120 different antenna data obtained by the ANSYS HFSS simulation program are used in the training and testing processes of the ANN model. The resonance frequency of the antenna is determined using the created ANN model for various parameters of the antenna. When the simulation and test results are compared, a mean error value for 40 test data is 0.34% is obtained. The results show that the multilayer network structure can be successfully used to determine the resonance frequency. The ANN model is created using MATLAB software to construct classifier performance algorithms.

___

  • Agatonović, M., Marinković, Z., & Marković, V. (2011). Modeling of Microwave Pyramidal Absorbers using Artificial Neural Networks. 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers, 1012-1015.
  • Ataş, İ., Kurt, M. B., & Ataş, M. (2013). Açıklık Kuplajlı Mikroşerit Yama Antenler İçin Yapay Sinir Ağ Modeli. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi , 69-75.
  • Balanis, C. A. (2016). Antenna Theory: Analysis and Design, 4th Edition. John Wiley & Sons, Inc.
  • Chew, W. C., Kong, J. A., & Shen, L. C. (2008). Radiation characteristics of a circular microstrip antenna. Journal of Applied Physics 51. doi:10.1063/1.328138
  • Dearnley, R. W., & Barel, A. R. (1989). A Comparison Of Models To Determine The Resonant Frequencies Of A Rectangular Microstrip Antenna. IEEE Transactions on Antennas and Propagation vol. 37, 114-118. doi:10.1109/8.192173
  • Garg, R., Bharrtia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip Antenna Design Handbook. London: Artech House.
  • Haykin, S. (2004). Neural Networks A Comprehensive Foundation. Indian: Pearson Education Singapore Pte Ltd.
  • İmamoğlu, F. (2019). Yüksek Lisans Tezi. Mikroşerit Antenlerin Tasarım Ve Performans Optimizasyonu. Bursa, Türkiye: Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü.
  • Jyosthna, R., Sunny, R. A., Jugale, A. A., & Ahmed, M. R. (2020). Microstrip Patch Antenna Design for Space Applications . 2020 International Conference on Communication and Signal Processing (ICCSP), (s. 406-410). "Microstrip Patch Antenna Design for Space Applications. doi:10.1109/ICCSP48568.2020.9182250.
  • Kayabaşı, A., Biçer, M., Akdağlı, A., & Toktaş, A. (2013). Uhf Bandında Çalışan H Şekilli Kompakt Mikroşerit Antenlerin Rezonans Frekansının Yapay Sinir Ağları Kullanarak Hesaplanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 26 (4), 833-840.
  • Kumar, G., & Ray, K. P. (2003). Broadband Microstrip Antennas, Artech House, USA, 2003. USA: Artech House.
  • Mishra, R., & Patnaik, A. (1998). Neural Network-Based CAD Model For The Design Of Square-Patch Antennas. IEEE Transactions on Antennas and Propagation, vol. 46, no. 12, 1890-1891. doi:10.1109/8.743842.
  • Nayna, T. F., Baki, A. K., & Ahmed, F. (2014). Comparative Study Of Rectangular And Circular Microstrip Patch Antennas İn X Band. 2014 International Conference on Electrical Engineering and Information & Communication Technology. Dhaka, Bangladesh.
  • Oluyemi, O., Laforge, P., & Bais, A. (2021). Artificial Neural Network for Microwave Filter Design using a Circuit Model. 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (s. 1-2). Winnipeg, MB, Canada: IEEE. doi: 10.1109/ANTEM51107.2021.9518641
  • Prakasam, V., & Reddy, N. (2021). Hexagonal Shaped Micro-strip Patch Antenna Design for 2.45 GHz WLAN System. Proceedings of the Sixth International Conference on Inventive Computation Technologies [ICICT 2021]. Coimbatore, India. doi:10.1109/ICICT50816.2021.9358687
  • Rajan, S. P., & Vivek, C. (2019). Analysis and Design of Microstrip Patch Antenna for Radar. Journal of Electrical Engineering & Technology 14, 923-929.
  • Sağıroğlu, Ş., Güney, K., & Erler, M. (1998). Resonant Frequency Calculation for Circular Microstrip Antennas Using Artificial Neural Networks. International Journal of RF and Microwave Computer-Aided Engineering, 270–277.
  • Sainati, R. A. (1996). CAD of Microstrip Antennas for Wireless Applications Nowood, MA: Artech House. Norwood: Artech House.
  • Sanchez, J. R. (2004). EM-Based Optimization Of Microwave Circuits Using Artificial Neural Networks: The State-Of-The-Art. IEEE Transactions on Microwave Theory and Techniques, 420-435.
  • Singh, V., Mishra, B., Tripathi, P. N., & Singh, R. (2016). A Compact Quad‐Band Microstrip Antenna For S And C‐Band Applications. Microwave and Optical Technology Letters, 58(6), 1365-1369.
  • Tang, C. L., Chen, H., & Wong, K. L. (1997). Small Circular Microstrip Antenna With Dual-Frequency Operation. Electronics Letters.
  • Türker, N., Güneş, F., & Yıldırım, T. (2007). Artificial Neural Design of Microstrip Antennas. Turkish Journal of Electrical Engineering & Computer Sciences, 445-453.
  • Zhang, W., Feng, F., Liu, W., Yan, S., Zhang, J., Jin, J., & Zhang, Q.-J. (2021). Advanced Parallel Space-Mapping-Based Multiphysics Optimization for High-Power Microwave Filters. IEEE Transactions on Microwave Theory and Techniques vol.69, 2470-2484.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç