Bağlantılı Sürücüsüz Araçların Siber Güvenliği

Araç ağ sistemlerindeki haberleşme güvenliğinin önemi, gelişen otomotiv endüstrisi ile her geçen gün önemi artan bir konudur. Önerilen çalışma, otomotiv sistem güvenliğini sağlamak için temel gereksinimleri ve bizim açımızdan bağlantılı araçların güvenliği için faydalı olabilecek bazı kriptografi algoritmalarını kapsamaktadır. Otonom sistemler çok sayıda IoT sensör verisi kullanır. Bağlı araçlar bir veri paylaşım ağına sahiptir ve güvenlik saldırılarına karşı savunmasızdır. Dolayısıyla, bu verilerin güvenliğini sağlamak önemli bir zorluktur. Bu çalışmanın temel amacı, birbirine bağlı araçlar arasındaki iletişimin temel güvenlik unsurlarına dikkat çekmek, günlük önemine ve insan hayatındaki kullanım noktalarına değinmek ve kullanılabilecek olası kriptografi yöntemleri hakkında bilgi vererek araştırmayı sunmaktır. mevcut çalışmalar hakkında. Araştırmamız, hem güçlü menkul kıymetler altyapı yöntemlerinin sağlanmasına hem de donanıma dayalı koşulların dikkate alınmasına odaklanmaktadır. Bu çalışmada, otonom sistem güvenlik sorunlarına dalan farklı yaklaşımlar, kriptografi algoritmaları, protokoller ve gerçek hayattaki şirketler ele alınmaktadır. Ayrıca literatür çalışmalarına katkı sağlayacağı düşünülen bazı önemli yöntem ve uygulamalar saldırı azaltma ve güvenlik gereksinimleri desteği olarak iki farklı açıdan bir tablo halinde sunulmuştur.

Cyber Security of Connected Autonomous Vehicles

Importance of communication security in vehicular network systems is a soaring issue with the evolving automotive industry day by day. The proposed study covers fundamental requirements to ensure automotive system security and some cryptography algorithms that can be beneficial for the security of connected cars from our point of view. Autonomous systems use lots of IoT sensors data. Connected vehicles have a data-sharing network and they are vulnerable to security attacks. So, ensuring the security of these data is an important challenge. The main purpose of this study is to draw attention to the basic security elements of communication between interconnected vehicles, to touch on its daily importance and usage points in human life, and to present the research on possible cryptography methods that can be used by giving information about the current studies. Our research focuses on ensuring both powerful securities infrastructure methods and considering hardware-based conditions. Different approaches, cryptography algorithms, protocols, and real-life companies that dive into autonomous system security challenges are tackled in this study. In addition, some of the important methods and applications are presented in a table from two different perspectives as attack mitigation and security requirements support that are thought to contribute to literature studies.

___

  • Kara, I. The Spy Next Door: A Digital Computer Analysis Approach for Backdoor Trojan Attack. Avrupa Bilim ve Teknoloji Dergisi, (24), 125-129.
  • Akca, A., Kara, I., & Aydos, M. Privacy, Security and Legal Aspects of Autonomous Vehicles.
  • Jadoon, A. K., Wang, L., Li, T., & Zia, M. A. (2018). Lightweight cryptographic techniques for automotive cybersecurity. Wireless Communications and Mobile Computing, 2018.
  • Sumra, I. A., Ahmad, I., & Hasbullah, H. (2011, October). Behavior of attacker and some new possible attacks in vehicular ad hoc network (VANET). In 2011 3rd international congress on ultra modern telecommunications and control systems and workshops (ICUMT) (pp. 1-8). IEEE.
  • Rawat, A., Sharma, S., & Sushil, R. (2012). VANET: Security attacks and its possible solutions. Journal of Information and Operations Management, 3(1), 301.
  • Zhang, Y., Liu, W., & Fang, Y. (2005, October). Secure localization in wireless sensor networks. In MILCOM 2005-2005 IEEE Military Communications Conference (pp. 3169-3175). IEEE.
  • Karahasanovic, A. (2016). Automotive Cyber Security-Threat modeling of the AUTOSAR standard. Chalmers University of Technology.
  • Singh, M., & Kim, S. (2017). Blockchain based intelligent vehicle data sharing framework. arXiv preprint arXiv:1708.09721.
  • Kamble, N., Gala, R., Vijayaraghavan, R., Shukla, E., & Patel, D. (2021). Using Blockchain in Autonomous Vehicles. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications (pp. 285-305). Springer, Cham.
  • Sanzgiri, K., Dahill, B., Levine, B. N., Shields, C., & Belding-Royer, E. M. (2002, November). A secure routing protocol for ad hoc networks. In 10th IEEE International Conference on Network Protocols, 2002. Proceedings. (pp. 78-87). IEEE.
  • Zhu, S., Xu, S., Setia, S., & Jajodia, S. (2006). LHAP: a lightweight network access control protocol for ad hoc networks. Ad Hoc Networks, 4(5), 567-585.
  • Hu, Y. C., Johnson, D. B., & Perrig, A. (2003). SEAD: Secure efficient distance vector routing for mobile wireless ad hoc networks. Ad hoc networks, 1(1), 175-192.
  • Hu, Y. C., Perrig, A., & Johnson, D. B. (2005). Ariadne: A secure on-demand routing protocol for ad hoc networks. Wireless networks, 11(1), 21-38.
  • Chen, C., Wang, X., Han, W., & Zang, B. (2009, June). A robust detection of the sybil attack in urban vanets. In 2009 29th IEEE International Conference on Distributed Computing Systems Workshops (pp. 270-276). IEEE.
  • Zapata, M. G., & Asokan, N. (2002, September). Securing ad hoc routing protocols. In Proceedings of the 1st ACM workshop on Wireless security (pp. 1-10).
  • Perkins, C. E., & Royer, E. M. (1999, February). Ad-hoc on-demand distance vector routing. In Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications (pp. 90-100). IEEE.
  • Cerri, D., & Ghioni, A. (2008). Securing AODV: the A-SAODV secure routing prototype. IEEE Communications Magazine, 46(2), 120-125.
  • Chim, T. W., Yiu, S. M., Hui, L. C., & Li, V. O. (2011). SPECS: Secure and privacy enhancing communications schemes for VANETs. Ad Hoc Networks, 9(2), 189-203.
  • Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J., ... & Vikkelsoe, C. (2007, September). PRESENT: An ultra-lightweight block cipher. In International workshop on cryptographic hardware and embedded systems (pp. 450-466). Springer, Berlin, Heidelberg.
  • Mohammed, R. S., Jabbar, K. K., & Hilal, H. A. (2021). Image encryption under spatial domain based on modify 2D LSCM chaotic map via dynamic substitution-permutation network. International Journal of Electrical & Computer Engineering (2088-8708), 11(4).
  • Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., & Biryukov, A. (2016, December). Design strategies for ARX with provable bounds: Sparx and LAX. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 484-513). Springer, Berlin, Heidelberg.
  • Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2013). The Simon and Speck families of lightweight block ciphers cryptology eprint archive.
  • Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., ... & Sim, S. M. (2016, August). The SKINNY family of block ciphers and its low-latency variant MANTIS. In Annual International Cryptology Conference (pp. 123-153). Springer, Berlin, Heidelberg.
  • Tupsamudre, H., Bisht, S., & Mukhopadhyay, D. (2014, September). Differential fault analysis on the families of SIMON and SPECK ciphers. In 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (pp. 40-48). IEEE.
  • Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2017). Notes on the design and analysis of SIMON and SPECK. IACR Cryptol. ePrint Arch., 2017, 560.
  • AlKhzaimi, H., & Lauridsen, M. M. (2013). Cryptanalysis of the SIMON Family of Block Ciphers. IACR Cryptol. ePrint Arch., 2013, 543.
  • Horng, S. J., Tzeng, S. F., Pan, Y., Fan, P., Wang, X., Li, T., & Khan, M. K. (2013). b-SPECS+: Batch verification for secure pseudonymous authentication in VANET. IEEE transactions on information forensics and security, 8(11), 1860-1875.
  • Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., & Manifavas, C. (2018). A review of lightweight block ciphers. Journal of cryptographic Engineering, 8(2), 141-184.
  • Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., & Manifavas, C. (2018). A review of lightweight block ciphers. Journal of cryptographic Engineering, 8(2), 141-184.
  • Yang, K. Security and Privacy in Vehicular Ad Hoc Networks (VANETs). Broadband Communications Research (BBCR) Lab, (September 12, 2021). https://ece.uwaterloo.ca/~kan.yang/security_bbcr/vanet.html.
  • Kara, İ.(2021) Web sitesi tabanlı oltalama saldırılarının adli analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 1-1.
  • Kara, I., Aydos, M., & Bozkır, A. S. (2020). Characteristic Behavioral Analysis of Malware: A Case study of Cryptowall Ransomware. Avrupa Bilim ve Teknoloji Dergisi, 486-493.