Weak stability of ?-isometry Mapping on Real Banach Spaces

The stability of standard ?-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity. However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for non-surjective ?-isometry.

Weak stability of ?-isometry Mapping on Real Banach Spaces

The stability of standard ?-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity. However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for non-surjective ?-isometry.

___

  • Benyamini, Y., & Lindenstrauss, J. (2000). Geometric nonlinear Functional Analysis I, Colloquium publications, vol. 48. American Mathematical Society.
  • Bourgin, D. G. (1946). Aproximate isometries. Bull. Amer. Math. Soc, 52(8), 704-714. https://doi.org/10.1090/S0002-9904-1946-08638-3
  • Cheng, L., & Dong, Y. (2020). Corrigendum to ‘A universal theorem for stability of ?-isometries of Banach spaces’, Jour. Func. Anal., 269(1), 199-214, 2015. Jour. Func. Anal., 279, 108518. https://doi.org/10.1016/j.jfa.2020.108518
  • Cheng, L., & Dong, Y. (2020). A note on the stability of nonsurjective ?-isometries of Banach spaces, Proc. Amer. Math. Soc., 148, 4837-4844. https://doi.org/10.1090/proc/15110
  • Cheng, L., Dong, Y., & Zhang, W. (2013). On stability of nonlinear non-surjective ?-isometries of Banach spaces. Jour. Func. Anal., 264(3), 713-734. https://doi.org/10.1016/j.jfa.2012.11.008
  • Dilworth, S. J. (1999). Approximate isometries on finite dimensional normed spaces. Bull. Lond. Math. Soc., 31(4), 471-476, 1999. https://doi.org/10.1112/S0024609398005591
  • Dutrieux, Y., & Lancien, G. (2008). Isometric embeddings of compact spaces into Banach spaces. Jour. Func. Anal., 255(2), 494-501. https://doi.org/10.1016/j.jfa.2008.04.002
  • Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2010). Banach Space Theory : The Basis for Linear and Nonlinear Analysis. Springer.
  • Figiel, T. (1968). On nonlinear isometric embedding of normed linear space. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 16, 185-188.
  • Gevirtz, J. (1983). Stability of isometries on Banach spaces. Proc. Amer. Math. Soc., 89(4), 633-636. https://doi.org/10.2307/2044596
  • Gruber, P. M. (1978). Stability of isometries. Trans. Amer. Math. Soc., 245, 263-277. https://doi.org/10.1090/S0002-9947-1978-0511409-2
  • Hyers, D. H., & Ulam, S. M. (1945). On approximate isometries. Bull. Amer. Math. Soc., 51(4), 288-292. https://doi.org/10.1090/S0002-9904-1945-08337-2
  • Larman, D.G., & Phelps, R. R. (1979). Gateaux differentiability of convex functions on Banach spaces. Jour. Lond. Math. Soc., S2-20, 115-127. https://doi.org/10.1112/jlms/s2-20.1.115
  • Mazur, S. & Ulam, S. (1932) Sur les transformations isométriques d’espaces vectoriels normés. C R Acad. Sci. Paris., 194, 946-948.
  • Megginson, R. E. (1991). An Introduction to Banach Space Theory. Springer.
  • Mukherjea, K. (2007). Differential Calculus in Normed Linear Spaces (2nd ed.). Hindustan Book Agency.
  • Omladič, M. & Šemrl, P. (1995). On Nonlinear Perturbation of Isometries. Math. Ann., 303, 617-628.
  • Phleps, R. R. (1993) Convex Functions, Monotone Operators, and Differentiability, Lecture Note in Mathematics, vol. 1364. Springer-Verlag, 1993.
  • Qian, S. (1995). ?-isometries embeddings. Proc. Amer. Math. Soc., 123(6), 1797-1803. https://doi.org/10.2307/2160993
  • Rohman, M., Wibowo, R. B. E., & Marjono. (2016). Stability of an almost surjective epsilon-isometry mapping in the dual of real Banach spaces. Aust. Jour. Math. Anal. App., 13, 1-9.
  • Schirotzek, W. (2007). Nonsmooth Analysis. Springer.
  • Šemrl, P., & Väisälä, J. (2003). Nonsurjective nearisometris of Banach Spaces. J. Funct. Anal., 198(1), 268-278. https://doi.org/10.1016/S0022-1236(02)00049-6
  • Tabor, J. (2000). Stability of surjectivity. J. Approx. Theory, 105(1), 166-175. https://doi.org/10.1006/jath.2000.3452
  • Vestfrid, I. A. (2015). Stability of almost surjective ε-isometries of Banach spaces. J. Funct. Anal., 269(7), 2165-2170. https://doi.org/10.1016/j.jfa.2015.04.009
  • Zhou, Y., Zhang, Z., & Liu, C. (2016). On linear isometries and ε-isometries between Banach spaces. Jour. Math. Anal. App., 435(1), 754-764. https://doi.org/10.1016/j.jmaa.2015.10.035
  • Bishop, E., & Phelps, R. R. (1961). A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67, 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Doğayı Mimarlıkta Kullanmak: Antoni Gaudi'den Bir Perspektif

Şeyda EMEKCİ

[n] Kümesinin Ardışık İki Çift Tamsayı İçermeyen Alt Kümelerinin Sayısını Veren Tamsayı Dizisini Genelleyen Polinom Dizisi

Barış ARSLAN, Kemal USLU

Dengesiz Kardiyak Aritmi Verilerinin Sınıflandırılması

Cansu ECEMİŞ, Neslihan AVCU, Zekeriya SARI

Termik Santral Kaynaklı Çevre Kirliliğini Önlemek İçin Baca Gazı Arıtma Teknolojisi:Örnek Çalışma Seyitömer Termik Santrali Uygulaması

Şeyma KAÇMAZ, Havva DEMİRPOLAT

İçmesuyu Dağıtım Sistemlerinde Arıza Bakım Onarım Süreçlerinin İzlenmesi için Performans Göstergeleri

Cansu ORHAN, Mahmut FIRAT, Salih YILMAZ, Abdullah ATEŞ

Ni-BW Kaplamalarında W Konsantrasyonun Sertlik ve Aşınma Özelliklerine Etkisi

Erhan DURU, Abdullah ÖZTÜRK, Mehmet UYSAL, Hatem AKBULUT, Serdar ASLAN

Orlicz Fonksiyonu Tarafından Belirlenen Karmaşık Belirsiz Üç İndisli Dizilerin Lacunary Yakınsaklığı Üzerine

Ömer KİŞİ, Erhan GÜLER

Makine Öğrenmesi ile Hedefe Yönelik Nanoterapötiklerin Üretim Parametrelerinin Optimizasyonu

Naim KARASEKRETER, Şeyda GÜNDÜZ, Sadık KAĞA, Süleyman YAMAN

Fasulye Genotiplerinde Tuz ve Kuraklık Stresleri Altında VPE Gen Ailesinin Genom Çapında Analizi ve Karakterizasyonu

Ahmed Sidar AYGÖREN, Selman MUSLU, Murat ISIYEL, Burak Muhammed ÖNER, Ayşe Gül KASAPOĞLU, Recep AYDINYURT, Esra YAPRAK, Sümeyra UÇAR, Emre İLHAN, Murat AYDIN

ZnO Kristalizasyonunun Morfolojisi, Boyut Dağılımı ve Yüzey Alanının Taguchi Deneysel Tasarımı Kullanılarak İncelenmesi

Muhammed Bora AKIN, Ömer Faruk DİLMAÇ, Barış ŞİMŞEK