Tarımsal Atıkların Yanmasının Emisyon Değerlendirmesi

Biyokütle, elektrik üretimi, konut ve ticari binaların ısıtılması, endüstriyel proses ısıtması, ulaşım vb. gibi enerji ihtiyaçlarını karşılamak için kullanılabilir. Biyoenerji sektörünün geleceği, biyokütle kaynaklarının mevcudiyetine ve dönüştürme teknolojilerindeki gelişmeye bağlıdır. Akışkan yatakta yanma, yakıt esnek özelliği ve artırılmış yanma verimliliği nedeniyle biyokütle yanması için uygun bir teknolojidir. Bu çalışmada, buğday samanı, mısır sapı, pirinç kabuğu, badem kabuğu, ceviz kabuğu ve şeker kamışı küspesi gibi tarımsal artıkların akışkan yatakta yakılmasından kaynaklanan atmosferik emisyonlar, matematiksel bir yanma modeli kullanılarak 1 MW termal enerji üretimi için değerlendirilmiştir. Biyokütlenin karbon nötr doğası nedeniyle biyokütleden CO2 emisyonları sıfır olarak kabul edilebilir. Badem kabuğu ve şeker kamışı küspesi en düşük SO2 ve NOx emisyonlarını göstermiştir. Şeker kamışı küspesi, bu çalışmada incelenen biyokütle türlerine kıyasla daha düşük korozyon riski göstermiştir. Biyokütle yanmasının performansı ve işleyişi, sırasıyla kireçtaşı eklenerek kükürtün tutulması ve katkı maddeleri eklenerek külle ilgili sorunların riskinin azaltılması ile artırılabilir.

Emission Assessment of Agro-Waste Combustion

Biomass can be used to meet energy needs for electricity generation, residential and commercial buildings’ heating, industrial process heating, transportation, etc. Future of bioenergy sector depends on the availability of biomass resources and development in conversion technologies. Fluidized bed combustion is a favorable technology for biomass combustion due its fuel flexible feature and enhanced combustion efficiency. In this study, the atmospheric emissions from fluidized bed combustion of agricultural residues such as wheat straw, corn stalk, rice husk, almond shell, walnut shell and sugarcane bagasse were estimated for 1 MW thermal energy production by using a mathematical combustion model. CO2 emissions from biomass can be regarded as zero due to the carbon neutral nature of biomass. Almond shell and sugarcane bagasse has shown the lowest SO2 and NOx emissions. Sugarcane bagasse has shown lower corrosion risk compared to the biomass types examined in this study. Performance and operation of biomass combustion can be enhanced by addition of limestone and additives for sulfur capturing and reducing the risk for ash related problems, respectively.

___

  • Akyürek Z (2021) Synergetic Effects during Co-Pyrolysis of Sheep Manure and Recycled Polyethylene Terephthalate. Polymers 13(14): 2363. https://doi.org/10.3390/polym13142363
  • Akyürek Z (2019) Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy. Sustainability 11(8): 2280. https://doi.org/10.3390/su11082280
  • Arvelakis S, Vourliotis P, Kakaras E, Koukiosa EG (2001) Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass and Bioenergy 20(6): 459-470. https://doi.org/10.1016/S0961-9534(01)00003-4
  • Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, Belle-Oudry D, Hill LM (1999) Release of inorganic constituents from leached biomass during thermal conversion. Energy and Fuels 13: 860. https://doi.org/10.1021/ef980256e
  • EU- The Medium Combustion Plant Directive Directive (EU) 2015/2193 of The European Parliament and of The Council, 25 November 2015. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2193&from=E
  • Faaij APC (2004) Biomass combustion. Encyclopedia of Energy 1: 175-191.
  • Gogebakan Z (2007) Co-firing Biomass with Coal in Bubbling Fluidized Bed Combustors, PhD Thesis, Middle East Technical University.
  • Hoogwijk MM, Faaij APC, van den Broek R, Berndes G, Gielen D, Turkenburg DC (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy 25(2): 119-133. https://doi.org/10.1016/S0961-9534(02)00191-5
  • Ibeto CN, Ayodele JA, Anyanwu CN (2016) Evaluation of Pollution Potentials and Fuel Properties of Nigerian SubBituminous Coal and its blends with Biomass. J. Mater. Environ. Sci. 7 (8): 2929-2937.
  • James AK, Thring RW, Helle H, Ghuman HS (2012) Ash Management Review—Applications of Biomass Bottom Ash. Energies 5: 3856-3873; https://doi.org/10.3390/en510385
  • Levendis YA, Joshi K, Khatami R, Sarofim AF (2011) Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame 158: 452–465. https://doi.org/10.1016/j.combustflame.2010.09.007
  • McKendry P (2002a) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
  • McKendry P (2002b) Energy production from biomass (part 2): conversion technologies. Bioresource Technology 83: 47-54. https://doi.org/10.1016/S0960-8524(01)00119-5
  • Mesa L, González E, Ruiz E, Romero I, Cara C, Felissia F, Castro E (2010) Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy 87: 109-114. https://doi.org/10.1016/j.apenergy.2009.07.016
  • Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress in Energy and Combustion Science 52: 1-61. https://doi.org/10.1016/j.pecs.2015.09.003
  • Nukman, Spahutar R (2015) The Potential of Biomass from Wood, Leaves, and Grass as Renewable Energy Sources in South Sumatera, Indonesia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37: 2710-2715. https://doi.org/10.1080/15567036.2012.738286
  • Rozainee M, Ngo SP, Salema AA, Tan, KG (2010) Computational fluid dynamics modeling of rice husk combustion in a fluidized bed combustor. Powder Technology 203: 331–347. https://doi.org/10.1016/j.powtec.2010.05.026
  • Safari F, Javani N, Yumurtaci Z (2018) Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy 43: 1071-1080. https://doi.org/10.1016/j.ijhydene.2017.05.102
  • Saidur R, Abdelaziz EA, Demirbas A, Hossaina MS, Mekhilef S (2011) A review on biomass as a fuel for boilers, Renewable and Sustainable Energy Reviews 15: 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.
  • The World Biggest Biomass Power Plants; https://www.power-technology.com/features/featurepower-from-waste-the-worlds-biggest-biomass-power-plants-4205990/
  • Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98: 22-28. https://doi.org/10.1016/j.biortech.2005.12.005
  • Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal 22: 962-979. https://doi.org/10.18331/BRJ2019.6.2.3
  • Vamvuka D, Zografos D, Alevizos G (2008) Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresource Technology 99: 3334-3344. https://doi.org/10.1016/j.biortech.2007.07.049